

SeaClouds Project
D3.2 Discovery, design and

orchestration functionalities
Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based

applications
Call identifier FP7-ICT-2012-10
Grant agreement no. Collaborative Project
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP3, WP SeaClouds Design-Time modelling and orchestration
Deliverable code D3.2
Deliverable Title Discovery, design and orchestration functionalities
Nature Report
Dissemination Level Public
Due Date: M18
Submission Date: Date of actual submission – 02nd April 2015
Version: 1.0
Status Draft
Author(s): Marc Oriol (UPI), Simone Zenzaro (UPI), Leonardo Bartoloni

(UPI), Mattia Buccarella (UPI), Antonio Brogi (UPI), Diego Pérez
(POLIMI), Miguel Barriuso (NURO), Roi Sucasas (ATOS), José
Carrasco (UMA), Adrián Nieto (UMA), Miguel Barrientos (UMA),
Javi Cubo (UMA)

Reviewer(s) Francesco d’Andria (ATOS), Andrea Turli (Cloudsoft)

D3.2 Discovery, design and orchestration functionalities 2

Dissemination level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments,
Changes, Status

Authors, contributors, reviewers

0.1 09/03/15 First ToC Marc Oriol (UPI), Antonio Brogi (UPI)
0.2 18/03/15 First contributions Leonardo Bartoloni (UPI) Simone Zenzaro

(UPI), Mattia Buccarella (UPI), Marc Oriol
(UPI), Miguel Barriuso(NURO), Roi Sucasas
(ATOS), José Carrasco (UMA), Adrián Nieto
(UMA), Miguel Barrientos (UMA), Diego
Pérez (POLIMI)

0.3 24/03/15 Second
contributions

Leonardo Bartoloni (UPI), Simone Zenzaro
(UPI), Mattia Buccarella (UPI), Marc Oriol
(UPI), José Carrasco (UMA), Javi Cubo (UMA),
Adrián Nieto (UMA), Miguel Barrientos
(UMA), Diego Pérez (POLIMI)

0.4 26/03/15 Version to be
revised

Marc Oriol (UPI), Simone Zenzaro (UPI),
Leonardo Bartoloni (UPI), Mattia Buccarella
(UPI), Javier Cubo (UMA)

0.5 01/04/15 Revision Francesco d’Andria (ATOS), Andrea Turli
(Cloudsoft)

1.0 02/04/15 Stable version after
reviews

Marc Oriol (UPI)

D3.2 Discovery, design and orchestration functionalities 3

Table of Contents

List of figures .. 5

List of tables .. 6

Executive Summary ... 7

1. Introduction .. 8

1.1. Glossary of Acronyms ... 8

2. Specification of Application Properties and requirements 8

2.1. Application Model Lifecycle ... 8

2.2. Topology and properties required ... 10

2.2.1. Topology ... 10

2.2.2. IaaS & PaaS properties .. 11

2.3. Graphical TOSCA Model ... 17

2.3.1. AAM TOSCA Model .. 17

2.3.2. Cloud Offerings TOSCA Model ... 19

2.3.3. ADP Model ... 20

2.3.4. DAM and Live Model .. 21

2.4. TOSCA YAML schema .. 21

2.4.1. AAM .. 21

2.4.2. Cloud Offerings ... 24

2.4.3. ADP Model ... 29

2.5. Case Studies specification in TOSCA YAML 29

2.5.1. Cloud Gaming specification .. 29

2.5.2. SoftCare specification ... 33

AAM specification .. 35

3. Parser of TOSCA ... 36

3.1. Using a TOSCA subset ... 37

3.2. Design decisions ... 38

4. Discoverer .. 40

4.1. Discoverer Architecture & Design ... 40

4.2. Discoverer Modules... 40

4.2.1. CloudHarmony component ... 40

4.2.2. PaaSify component ... 40

4.2.3. Cloud advertisement ... 41

D3.2 Discovery, design and orchestration functionalities 4

4.2.4. Monitoring component .. 41

4.2.5. Manual component ... 41

5. Planner .. 41

5.1. Planner Architecture & Design .. 42

5.2. Planner Modules ... 44

5.2.1. Matchmaking .. 44

5.2.2. Optimization .. 45

5.2.3. DAM generation .. 49

6. Conclusions ... 50

7. References .. 51

D3.2 Discovery, design and orchestration functionalities 5

List of figures
Figure 1. Application Model lifecycle ... 9
Figure 2. Example of Topology Model .. 11
Figure 3. Graphical TOSCA Model for AAM .. 18
Figure 4. Graphical TOSCA Model for the Cloud Offerings .. 19
Figure 5. Graphical TOSCA Model for the ADP ... 20
Figure 6. TOSCA YAML Schema of the Modules (Deployment Layer) 22
Figure 7. TOSCA YAML Schema of Functionalities and Dependencies (Logic Layer) 23
Figure 8. TOSCA YAML Schema for IaaS and Paas Offerings .. 26
Figure 9. TOSCA YAML Schema for property types. ... 26
Figure 10. IaaS offering example .. 28
Figure 11. PaaS Offering example .. 28
Figure 12. TOSCA YAML Schema for the Modules in the ADP 29
Figure 13. Cloud Gaming topology ... 29
Figure 14 Excerpt of the Cloud Gaming topology .. 31
Figure 15. Softcare topology .. 34
Figure 16. Excerpt of the SoftCare topology .. 35
Figure 17. The TOSCA elements which are used in SeaClouds. 38
Figure 18. TOSCA elements model. .. 39
Figure 19. Discoverer architecture ... 40
Figure 20. Planner Architecture. .. 42
Figure 21.Sequence diagram of planning ... 43
Figure 22. Sequence diagram of replanning ... 43
Figure 23. Design view of the Matchmaker ... 44
Figure 24. Design view of Optimize method interfaces ... 46
Figure 25. Sequence diagram of Optimize ... 47

D3.2 Discovery, design and orchestration functionalities 6

List of tables
Table 1. Acronyms .. 8
Table 2. Technical properties ... 15
Table 3. Database support .. 16
Table 4. Programming languages support .. 16
Table 5. Quality of Service .. 17

D3.2 Discovery, design and orchestration functionalities 7

Executive Summary

This document describes the specification of the application to be deployed by
SeaClouds, and how it evolves through different models, until reaching a multi-cloud
solution that orchestrates the different modules of the application into concrete PaaS
and IaaS services.

This deliverable is structured in two parts. In the first part, we address the specification
of the different models used along the process. In the second part, we describe the
architecture and design of the different components of SeaClouds that process the
above models.

In the first part, we first refine and consolidate the Application Model Lifecycle
presented in the previous deliverable D3.1 [1], defining the different stages of the
Application Models generated and consumed in the SeaClouds lifecycle. Secondly, we
elicit and consolidate the required pieces of information that should be present in these
models, identifying the characteristics and dependencies of the topology, as well as the
properties and QoS to be hold on the application and its components. Then, we describe
how these elements are represented on the different models of the lifecycle: first by
means of a graphical human-readable model, and ultimately by a formal machine-
readable TOSCA YAML specification. Finally, we validate this TOSCA YAML specifications
by instantiating the case studies defined in SeaClouds.

In the second part, we describe the architecture and design of the different components
of SeaClouds that generate and/or use the aforementioned models. Particularly, we
specify the Parser of TOSCA YAML, and the architecture and design of the Discoverer
and the Planner.

D3.2 Discovery, design and orchestration functionalities 8

1. Introduction

1.1. Glossary of Acronyms

Acronym Definition
AAM Abstract Application Model
ADP Abstract Deployment Plan
API Application Programming Interface
APP Application
DAM Deployable Application Model
DB Database
DBMS Database Management System
FAT File Allocation Table
HTTP HyperText Transfer Protocol
IaaS Infrastructure-as-a-Service
NTFS New Technology File System
OS Operating System
PaaS Platform-as-a-Service
PAYG Pay-As-You-Go
PHP Hypertext Preprocessor
QoB Quality of Business
QoS Quality of Service
SLA Service Level Agreement
SLO Service Level Objective
SSL Secure Sockets Layer
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modelling Language
URL Uniform Resource Locator
VM Virtual Machine
WP Work Package
XML Extensible Markup Language
YAML YAML Ain't a Markup Language

Table 1. Acronyms

2. Specification of Application Properties and requirements

This section describes the initial input of the SeaClouds platform given by a user. To this
end, an application model is proposed to represent all the related information.

2.1. Application Model Lifecycle

The main purpose of the application model is to keep a track of the constituents of a
multi-cloud application during its lifecycle through the SeaClouds platform. Figure 1
shows the application model lifecycle of the platform.

D3.2 Discovery, design and orchestration functionalities 9

The initial input for SeaClouds is, on the one hand, an abstract application, which is
instantiated by the user and described through an Abstract Application Model (AAM).
This model contains the definition of all the modules of the application, their
relationships, and the user’s requirements. These requirements are both technical and
QoS requirements that may apply to the whole application and/or to the constituent
modules. On the other hand, the Discoverer provides the Clouds Offerings Model. This
model includes the list of available cloud offerings (for both PaaS and IaaS) from service
providers, with information regarding their technical characteristics and QoS
information.

These two models are processed by the Matchmaker and the Optimizer, which generate
as output an Abstract Deployment Plan (ADP). The ADP is an intermediate result where
all the modules of the application are instantiated by concrete services that provide the
functionality required, meeting the technical and QoS requirements.

Then, the DAM Generator augments the information specified in the ADP and generates
a Deployable Application Model (DAM). The DAM contains the information needed by
the SeaClouds Deployer to deploy, configure and execute the application (e.g. with all
required information about credentials).

During execution, the Live Application Model is the one that keeps track of the status of
all application’s modules and that is used for supporting the dynamic evolution of the
application. If there is a violation on the QoS and replanning is required, the Planner is
triggered to generate a new Concrete Application Model, which will follow the same
Application Model lifecycle.

Figure 1. Application Model lifecycle

Abstract Application
Model

Cloud Offerings
Model

Abstract Deployment Plan
Model

Deployable Application
Model

Live Application
Model

Replanning
is needed

Application
Evolves
dynamically

Planner (Matchmaker + Optimizer)

User input on deployment configuration

Deployer

Discoverer

D3.2 Discovery, design and orchestration functionalities 10

2.2. Topology and properties required

2.2.1. Topology

The user is required to specify the topology information about the application to be
deployed. Topology information can be categorized in two layers: The deployment layer
and the logic layer.

Deployment layer:

This layer specifies the different components and artefacts of the application to be
deployed in a multi-cloud system. It describes the different software components of the
application, and for each component, the properties of IaaS or PaaS that are required.
These properties include both technical and QoS requirements (see Section 2.2.2 for
details). This is the minimal required information that the Planner needs (particularly,
the matchmaker and optimizer components) in order to select a suitable set of cloud
offerings and provide a set of solutions where to deploy each of the application’s
components in order to meet the specified requirements.

Logic layer:

The logic layer allows specifying a more detailed structure of the functionality and
defines the relationships and interaction between the different components of the
application. This information allows the SeaClouds platform to evaluate global
properties, and decide the deployment strategy keeping those global properties into
account (e.g. deploying two components that interact heavily in the same cloud
infrastructure to reduce network latencies).

The interaction between components are instantiated by defining the available
operations of the components and its relationships. In its simplest form, each
component has only one “use” operation, and the relationship between these “use”
operations reflect functional dependencies between components. In its more complete
form, it is possible that one component exposes operations with different performance
or QoS requirements, for which more than one operation should be defined.

The logic layer may include also some benchmarking information to predict the
behaviour of the component for optimization purposes.

As an example, we consider a simple application composed by a web interface and a
database (see Figure 2). The application has two different usage patterns, one being
normal user operation and the other being administrative usage. Normal user operation
usually involves two or three queries to the database, while administrative usage may
trigger a database backup, which is a slow operation. The QoS requirement for normal
usage would thus be different from the administrative usage, for which it may not be
possible to guarantee the same timings. In this case it would be desirable to define two
operations “NormalUsage” and “AdministrativeUsage” on the web interface with
different QoS requirements, and similarly two operations “Query” and “Dump” on the

D3.2 Discovery, design and orchestration functionalities 11

database with different benchmark values, and define the two relationship between
these operations: the first would be stating that the “NormalUsage” operation will
invoke an average of 2.5 “Query” operations, while “AdministrativeUsage” operation
will invoke the “Dump” operation, finally the 4 operations would be annotated with
benchmark information and when needed with QoS requirements.

Figure 2. Example of Topology Model

2.2.2. IaaS & PaaS properties

In this section we describe the important properties for both IaaS and PaaS that the user
may require for each of the software components of the application to be deployed.

The main idea of IaaS is to provide a virtualized computing resource. IaaS providers
enable the user to deploy virtual machines into the service provider’s premises, so the
user can benefit of the advantages of the service providers’ capabilities (e.g. scaling
operations in order to adjust resources on demand). In the context of SeaClouds, the
interest is to identify the capabilities and properties that define these virtual resources.

Unlike the IaaS, the PaaS allows a cloud user to deploy specific resources or applications
that run into the provider’s platforms, supporting also all the basic advantages of the
cloud computing field (scalability, elasticity, etc…). PaaS providers offer support to a
specific number of services and systems, depending on the capabilities of the offered
platform itself. As an example, without including any additional software within the
application being deployed, the application relies on pre-installed resources such as
databases, web servers, etc., with everything running on a specific operating system.
This pre-installed software stack is what makes the platform. In the context of
SeaClouds, the interest is to identify the capabilities and properties of these platforms.

The list of elicited properties comply with the data requirements as defined in D2.1 [2],
and include both technical properties and QoS.

D3.2 Discovery, design and orchestration functionalities 12

Technical properties:

Basic properties (IaaS and PaaS)
Each IaaS and PaaS is typically recognized by its service name. This property is simply a
string that often identifies the provider as well as the cloud (e.g., “Google App Engine”,
“Microsoft Windows Azure”, “Red Hat OpenShift”, etc.).
Even if the provider’s name is often included within the service name string, another
string, dedicated to the provider’s name only is potentially useful (e.g., some user could
lead the matchmaking process by favourite providers).

Computational Features (IaaS)
The two most interesting features that describe a virtual resource from the point of view
of its computational power are the number of cpus and the memory size.
The number of cpus represents the cardinality of computational units. This number is
related to the computational speed. When an application needs to perform cpu
intensive tasks this is one of the important parameters to tune.
The memory size represents the memory available for the applications running on the
virtual resource.

Networking (IaaS)
Networking properties define features about bandwidth costs, load-balancing
attributes, and the number of available IPs

Storage (IaaS)
The storage properties define disk capacity and the type of file system needed by the
cloud application.

Location (IaaS and PaaS)
Location property represents the location of the offering. It can be defined with different
levels of detail. It is possible to specify a wide area like “eu_west” or more precise
location “ie_Dublin”.

Scaling capabilities (IaaS and PaaS)
Deploying an application to the cloud brings many advantages, one of them is self-
adapting the platform to the real needs of the cloud application.

If the application needs more resources, cloud platform with scalable features can adjust
the amount of such resources also automatically. There are two kinds of scalability
operations: vertical and horizontal scaling.
Vertical scaling is useful when the application needs to increase the amount of resources
in order to fulfil its performance standard. It is also possible to reduce the amount of
resources when not needed with a decreased cost in the cloud for such application.
Horizontal scaling allows to instantiate the same machine multiple times.

D3.2 Discovery, design and orchestration functionalities 13

IaaS-like properties within PaaS
It is likely that, in spite of the structural differences between a PaaS and a IaaS, some
properties are common to both types of clouds. In particular, it is possible to find
specifications of the underlying architecture even relating to a PaaS cloud (e.g., core
frequency, memory and storage). For this reason, the same set of properties that is used
to characterize a IaaS is also included in the generic description of a PaaS.

Groups of properties
There are certain properties that can, in principle, vary in number. When relating to such
properties, one shall think of them as grouped in their suitable group, rather than reason
about each independently of the others. A couple of examples can be mentioned: the
database support and the programming language support. These two supports are
groups of properties, whose size depend on the number of databases and programming
languages respectively supported. In the follow-up of the document, a more detailed
table, that describes the properties more in detail, will be organized grouping the
properties, if needed.

Database Support (PaaS)
The set of supported DBMS (e.g., mysql, postgresql, oracle, and other common DBMS)
is hardly missing in the offerings of all the PaaSes. Each supported database is
represented by a boolean attribute whose name is the database name itself, followed
by “_support”.

Programming languages support (PaaS)
The properties about the supported programming languages follow the same logic
adopted by the database support. For each supported programming language, one
corresponding boolean value is set equal to true. Even in the programming language
case, properties shall be considered as a group of properties.

Other properties (PaaS)
One cloud could excel in other less common aspects and specific services with respect
to other clouds. This could make such clouds the preferred choice for the matchmaker
during the allocation of the applications onto the available resources. These resources
involve SSL features, auto-scaling, automatic recovery from failures, information about
used virtual machines, domains, IP, etc. Each of this property is represented by one
corresponding boolean attribute. The full list can be found in the follow-up of the
document.

D3.2 Discovery, design and orchestration functionalities 14

QoS properties:

Availability (IaaS and PaaS)
The service availability is one of the most important characteristics that contribute to
the evaluation of the quality of service. It is, in general, a percentage value that shows
for how much time the service could be successfully reached and utilized. It may happen
that such information is provided as a list of percentages, each described by a string
containing notes about the value. As an example, a broker may provide availabilities for
instants of one hour each or for wider periods like past weeks, past months, etc. Since
we are viewing through the perspective of properties, the availability is the least value
the contract of a certain provider guarantees to the cloud users.

Bandwidth pricing (IaaS and PaaS)
Another important resource, provided by the clouds, is the connection bandwidth.
Consequently, a pricing plan for the provider becomes an essential property for the
quality of service of the cloud itself and for its performance over networking
applications.
The bandwidth is typically assigned a cost per some quantity of bytes exchanged (e.g.,
dollar/KB, dollar/MB, etc...) and it is often charged independently of the direction of the
data (i.e., incoming data and outgoing data).

Service pricing (IaaS and PaaS)
The pricing of the service depends on the business model the cloud itself decided to
apply to enter the market. In general, one cloud could provide, at the disposal of the
cloud consumer, different pricing plans, each based on the PAYG paradigm. In order for
attributes to suitably model the service pricing, a complex type is defined.
The platform_pricing node is a list of complex types defined by means of the following
properties:

● name, a string identifying the name of the pricing under consideration
● price_per_hour, floating-point value, expressed in dollars
● cpu, a scalar value expressing the clock frequency of the processor of the cloud

in MHz
● memory, a scalar value expressing the amount of available RAM memory in MB
● local_storage, a scalar value expressing the amount of available disk quota in GB

D3.2 Discovery, design and orchestration functionalities 15

IaaS and PaaS concepts overview
In the following tables, we summarize the list of properties described.

Table 2. Technical properties

Property name Description Applies to

num_cpus Number of cpus IaaS

mem_size Memory size IaaS

disk_size Disk Size IaaS

load_balancing Load balancing support IaaS

scaling_horizontal Horizontal scaling support IaaS

scaling_vertical Vertical scaling support IaaS

storage_type The type of filesystem for the storage (e.g.
SATA)

IaaS

storage_file_system The file system type for the storage. (e.g. NTFS) IaaS

service_name Name of the offering PaaS, IaaS

provider_name Name of the provider PaaS, IaaS

location Geographic information about the location of
the servers

PaaS, IaaS

api_restricted Boolean, telling whether the API at the
developer’s disposal are limited to or
customized for some specific feature (e.g.,
networking)

PaaS

auto_failover Boolean, true when the cloud has the
capability of automatically recover after a
failure

PaaS

auto_scaling Boolean, true when the cloud has the
capability of automatically scale, depending on
the outside demand

PaaS

process_based Boolean, true if the functioning of the cloud
can be thought as a pool of workers doing the
assigned tasks.

PaaS

D3.2 Discovery, design and orchestration functionalities 16

self_hostable Boolean, true when the provider offers a self
hostable option that simulates/duplicates the
platform features and functionality

PaaS

vm_based Boolean, true when the deploying application
is going to be hosted and executed upon a
virtual machine.

PaaS

Table 3. Database support

Database support

MySQL_support Boolean, true when it is possible to attach to a
MySQL database.

PaaS

PostgreSQL_support Boolean, true when it is possible to attach to a
MySQL database.

PaaS

Oracle_support Boolean, true when it is possible to attach to
an ORACLE database.

PaaS

SQLite_support Boolean, true when it is possible to attach to
an SQLite database.

PaaS

MongoDB_support Boolean, true when it is possible to attach to a
Mongo database.

PaaS

Table 4. Programming languages support

Programming languages support

DotNet_support Boolean, true when it is possible to develop
the deploying application in any of the .Net
languages (C#, J#, VB.Net, F#, etc…)

PaaS

Python_support Boolean, true when it is possible to develop
the deploying application in Python.

PaaS

Java_support Boolean, true when it is possible to develop
the deploying application in Java.

PaaS

Go_support Boolean, true when it is possible to develop
the deploying application in Go.

PaaS

D3.2 Discovery, design and orchestration functionalities 17

Table 5. Quality of Service

Quality of Service

availability Percentage; how much time one cloud has
been reachable for

PaaS, IaaS

bandwidth_pricing Cost for exchanged data over Internet
Connection

PaaS, IaaS

service_pricing Cost of the offering PaaS, IaaS

2.3. Graphical TOSCA Model
This section provides the technical information for the following models: Abstract
Application Model, Cloud Offerings, Abstract Deployment Plan, Deployable Application
Model and Live Model. All these Models are implemented using the TOSCA YAML syntax
[6], which provides a more compact and maintainable syntax than his TOSCA XML
ancestor, used in D3.1[1].

2.3.1. AAM TOSCA Model

The AAM TOSCA Model (see Figure 3) is the model instantiated by the user that
describes the topology of the application and its requirements (for both the application
and each of its constituent modules). The structure of the AAM TOSCA Model is
composed by the following elements: Modules, Relationships and Application
operation.

• Modules are the basic building blocks of the application. A module can be either
a IaaS (of type seaclouds.Types.Compute) or a PaaS (of type
seaclouds.Types.Platform). Each module defines its functional
requirements as Properties (e.g. num_cpus).

• Relationships are connections between modules. Each relationship has a name

and a set of properties that provides useful information for the optimization
process (e.g. the average usage count). Relationships are identified by
seaclouds.Types.Relationship types (e.g. Uses).

• Application operation is a description of a functionality of a module and is

identified by the TOSCA type seaclouds.Types.Logic. In the AAM, an
operation is enriched with QoS information. There are two categories of QoS
information: QoS_info and QoS_requirements.

D3.2 Discovery, design and orchestration functionalities 18

QoS_info defines information about benchmarked properties that are useful
for optimization purposes.

QoS_requirements defines the required QoS for that operation (e.g. the
execution time must be below 3 seconds).

Figure 3. Graphical TOSCA Model for AAM

D3.2 Discovery, design and orchestration functionalities 19

2.3.2. Cloud Offerings TOSCA Model

Cloud offerings identifies two main cloud offering category types: Compute and
Platform (see Figure 4).

The TOSCA type seaclouds.nodes.Compute extends the TOSCA type
tosca.nodes.Compute and is used to describe IaaS offerings while the TOSCA type
seaclouds.nodes.Platform is used to describe PaaS offerings.

Exploiting the TOSCA type system, each cloud offering is considered an extension of
these two basic types. These node types already describe part of the interesting
information of the cloud offerings, for example the IaaS offerings already have defined
properties about virtual machines like the number of cpu cores or the memory and disk
size but also information about scaling support and location. Similarly happens for the
PaaS offering model.

TOSCA type system exploitation allows to have extensible property set when a new
offering is added to the repository. This approach helps to address the various features
of PaaS offering.

For example if the support for a particular language is not present in the
seaclouds.nodes.Platform definition, extending this type into a PaaS offering
allows to add such language support to the set of features naturally.

Figure 4. Graphical TOSCA Model for the Cloud Offerings

D3.2 Discovery, design and orchestration functionalities 20

2.3.3. ADP Model

The ADP TOSCA Model is the internal model, previous to the DAM, that describes the
deployment plan. The ADP TOSCA Model describes the topology of the application with
concrete services on each module from IaaS and PaaS providers. That is, each of the
modules of the application in the AAM are mapped to a concrete service that fulfill the
required technical properties and QoS defined for that module. Furthermore, the
application (i.e. composition of modules) satisfies also the requirements defined at the
application level.

As shown in Figure 5, the structure of the ADP TOSCA Model is similar to the elements
presented in the AAM, with the particularity that the modules in AAM are replaced by
concrete Cloud Offerings as defined in the Cloud Offerings Model (i.e.
seaclouds.nodes.Platform for PaaS services and
seaclouds.nodes.Compute for IaaS).

Figure 5. Graphical TOSCA Model for the ADP

D3.2 Discovery, design and orchestration functionalities 21

2.3.4. DAM and Live Model

The DAM Model augments the information stored in the ADP with the data required to
perform the deployment of the different modules of the application on the selected
clouds (e.g. credential, reconfiguration policies, etc.). Specifically, the DAM is
generated by the DAM generator by using the ADP internal model and interacting
with the user to retrieve the required information. Overall, DAM describes the complete
application structure and the deployment plan to distribute the different elements over
the target locations. The structure of the DAM Model includes the information of the
ADP and the following elements:

• the configuration parameters of the application modules
• the credentials required by the selected clouds for hosting application modules
• the reconfiguration policies.

The live Model contains the current status of the application, as specified in DAM,
including the following additional runtime information:

• structure of application modules (including additional modules that could be
created at runtime, due to resizing dynamic entities, such as clusters)

• current policy status of each application module
• runtime information regarding QoS
• available effectors (start, restart, stop, etc.), executed when the policy

thresholds/target are violated, for each application module.

The DAM and Live Models are not used to generate a deploymen plan, but to execute a
deployment and maintain runtime information of the application respectively. For such
a reason, their formal definition is out of scope of this deliverable, and they will be
developed and presented in their respective deliverables taking also into account the
requirements and considerations as defined in D2.1 [2].

2.4. TOSCA YAML schema

In this section we describe the formalization of the TOSCA YAML schemas [6] for the
models that have been defined in section 2.3, which include the AAM, Cloud Offerings
and ADP. As described previously, the DAM and Live Models are out of the scope of this
deliverable.

2.4.1. AAM

Here we describe how to formalize the AAM in SeaClouds TOSCA YAML. As described
previously, the AAM is structured on two layers: The Deployment layer and the Logic
Layer.

D3.2 Discovery, design and orchestration functionalities 22

Deployment layer

The Deployment layer is composed of several modules. A module is a minimal
deployable entity, and it is defined by a node_template in the AAM. The type of the
node template specifying a module is usually seaclouds.nodes.Compute or
seaclouds.nodes.Platform, but can also be a more specific type if the user
wants to specify a particular instance (for example
seaclouds.cloudofferings.Amazon.EC2). Figure 6 depicts the TOSCA YAML
Schema for this layer.

The properties of these modules define technical requirements on the cloud offering
which should be selected to deploy the module, such as available memory for IaaS or
the services provided for PaaS. These properties are further explained and their scheme
is defined in the next section.

Modules (Deployment Layer)

node_templates:
 <module_name>:
 type: <module_type>
 properties:
 <property_name> : <property_value>
 …

Figure 6. TOSCA YAML Schema of the Modules (Deployment Layer)

Logic layer

The logic layer is composed of the functionalities of the modules and the dependencies
between them. The functionalities are expressed as node templates with the
seaclouds.nodes.Logic type. The Logic nodes must have a host named
requirement which refers to the module implementing the functionality being
described. The dependency from functionalities provided by other modules in the
application can be expressed using requirement linking to other logic nodes with a
relationship of the type seaclouds.relationships.Uses. The Uses
relationship has a property average_usage_count which defines how many times
the target functionality need to be used in average to provide the functionality being
described.

In Logic nodes the user can also define two properties: qos_requirements and
qos_info, that respectively specify the QoS requirements for the given functionality
and the benchmark information needed to compute them (e.g. required cpu_time and
benchmark of the used platform). Figure 7 depicts the TOSCA YAML Schema for this
layer.

D3.2 Discovery, design and orchestration functionalities 23

Functionalities and Dependencies (Logic Layer)

relationship_types:
 seaclouds.relationships.Uses:
 valid_targets: [seaclouds.nodes.Logic]
 properties:
 average_usage_count:
 type: float
 default_value: 1.0

node_types:
 seaclouds.nodes.Logic:
 derived_from: tosca.nodes.Root
 properties:
 qos_info:
 type: seaclouds.types.QosInfo
 qos_requirements:
 type: seaclouds.types.QosRequirement
 requirements:
 - host:
 node: tosca.nodes.Root
 relationship: tosca.relationships.HostedOn

relationship_templates:
 <relationship_name>:
 type: seaclouds.relationships.Uses
 properties:
 average_usage_count: 2

node_templates:
 <functionality_name>:
 type: seaclouds.nodes.Logic
 properties:
 qos_requirements:
 <property_name>: <property_value>
 …
 qos_info:
 <benchmark_platform> : <property_value>
 <property_name>: <property_value>
 …
 requirements:
 - host: <host_module>
 - <dependency_name>:
 node: <other_functionality_name>
 relationship: <relationship_name>
 - …

Figure 7. TOSCA YAML Schema of Functionalities and Dependencies (Logic Layer)

D3.2 Discovery, design and orchestration functionalities 24

2.4.2. Cloud Offerings
Here we describe how to define the Cloud Offerings in SeaClouds TOSCA YAML.
The different cloud offerings are defined as node_types and are structured in the
form of seaclouds.nodes.Compute for IaaS and
seaclouds.nodes.Platform for PaaS (see Figure 8). Each of the cloud offerings
contains the technical and QoS properties, which can be simple elements, or complex
structs defined in the property types (see Figure 9). We also provide an example of cloud
offering for PaaS (see Figure 10) and IaaS (see Figure 11).

Node Types

tosca_definitions_version: tosca_simple_yaml_1_0

node_types:
 seaclouds.nodes.Compute:
 derived_from: tosca.nodes.Compute
 properties:
 scaling_horizontal:
 type: string
 constraints:
 valid_values: [no,manual,auto]
 scaling_vertical:
 type: string
 constraints:
 valid_values: [no,manual,auto]
 storage_type:
 type: string
 valid_values: [sata, sas, ssd, scsi, …]
 storage_file_system:
 type:string
 valid_values: [ntfs, fat32, …]
 storage_size:
 type: scalar-unit
 location:
 type: seaclouds.types.Location
 networking:
 type: seaclouds.types.NodeNetworkInfo

 seaclouds.nodes.Platform:
 properties:
 service_name:
 type: string
 location:
 type: seaclouds.types.Location
 service_availability:
 type: list
 entry_schema:

D3.2 Discovery, design and orchestration functionalities 25

 properties:
 name:
 type: string
 percentage:
 type: float
 constraints:
 - in_range: [0, 100]

 notes:
 type: string
 bandwidth_pricing:

type: list
entry_schema:
 properties:

 outbound_pricing:
 type: string
 description:
 type: string
 inbound_pricing:
 type: string
 service_features:
 properties:
 api_restricted:
 type: boolean
 auto_failover:
 type: boolean
 auto_scaling:
 type: boolean
 process_based:
 type: boolean
 self_hostable:
 type: boolean
 vm_based:
 type: boolean
 MySQL_support:
 type: boolean
 Go_support:
 type: boolean
 Java_support:
 type: boolean
 Python_support:
 type: boolean
 MongoDB_support:
 type: boolean
 platform_pricing:
 type: list
 entry_schema:
 description: TOSCA YAML for payg paas model
 properties:
 name:
 type: string

D3.2 Discovery, design and orchestration functionalities 26

 price_per_hour:
 type: float
 constraints:
 - greater_or_equal: 0
 cpu:
 type: string
 memory:
 type: integer
 constraints:
 - greater_or_equal: 0
 local_storage:
 type: integer
 constraints:
 - greater_or_equal: 0

Figure 8. TOSCA YAML Schema for IaaS and Paas Offerings

Property types

tosca_definitions_version: tosca_simple_yaml_1_0

property_types:
 seaclouds.types.NodeNetworkInfo:
 outbound_bandwidth:
 type: scalar-unit
 inbound_bandwidth:
 type: scalar-unit
 load_balancing:
 type: bool
 number_of_ipv4:
 type: integer

 seaclouds.types.Location:
 seaclouds.types.Location.Europe:
 derived_from: seaclouds.types.Locations
 seaclouds.types.Location.Europe.Germany:
 derived_from: seaclouds.type.Locations.Europe
 ...

Figure 9. TOSCA YAML Schema for property types.

D3.2 Discovery, design and orchestration functionalities 27

IaaS Offering Example

tosca_definitions_version: tosca_simple_yaml_1_0

property_types:
 seaclouds.types.os
 seaclouds.types.os.linux:
 derived_from: seaclouds.types.os
 seaclouds.types.os.linux.centos:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.debian:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.fedora:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.gentoo:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.rhel:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.suse:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.linux.ubuntu:
 derived_from: seaclouds.types.os.linux
 seaclouds.types.os.windows:
 derived_from: seaclouds.types.os
 seaclouds.types.os.windows.2008:
 derived_from: seaclouds.types.os.windows
 seaclouds.types.os.windows.2012
 derived_from: seaclouds.types.os.windows
 seaclouds.types.os.freeBSD:
 derived_from: seaclouds.types.os

node_types:
 seaclouds.nodes.Compute.Amazon:
 derived_from: seaclouds.nodes.Compute
 properties:
 operating_system:
 type: seaclouds.types.os
 attributes:
 load_balancing: true

 seaclouds.nodes.Compute.Amazon.c1.xlarge:
 derived_from: seaclouds.nodes.Compute.Amazon
 attributes:
 location:
seaclouds.types.Locations.AM.US.OR.Portland
 operating_system: seaclouds.types.os.linux.ubuntu
 num_cpus: 8
 mem_size: 7 GB

D3.2 Discovery, design and orchestration functionalities 28

 disk_type: sata
 local_storage: 1.6 TB

Figure 10. IaaS offering example

PaaS Offering Example

tosca_definitions_version: tosca_simple_yaml_1_0

nodetypes:
 seaclouds.nodes.Platform.GoogleAppEngine:
 derived_from: seaclouds.node.Platform
 attributes:
 service_name: 'Google AppEngine'
 service_availability:
 - name: 'Service Level Agreement (SLA)'
 percentage: 99.95
 - name: '30 Days'
 percentage: 99.9037

 bandwidth_pricing:
 outbound_pricing: 'First 1GB = Free, Over 1GB = $0.120/GB'
 inbound_pricing: 'No Cap = Free'

 service_features:
 api_restricted: true
 auto_failover: true
 auto_scaling: true
 process_based: true
 MySQL_support: true
 Go_support: true
 Java_support: true
 Python_support: true

 platform_pricing:
 - name: 'B1'
 price_per_hour: 0.080
 cpu: '600MHz'
 memory: 128
 local_storage: 0
 - name: 'F1'
 price_per_hour: 0.050
 cpu: '600MHz'
 memory: 128
 local_storage: 0

 service_location:
seaclouds.types.Locations.EU.IE.Dublin

Figure 11. PaaS Offering example

D3.2 Discovery, design and orchestration functionalities 29

2.4.3. ADP Model
An ADP model is constructed by replacing the module_types of the modules of the AAM
with concrete types corresponding to the specific cloud offerings chosen for
deployment. Hence, the ADP Model does not require the definition of new elements,
but reuses the same elements as defined previously in the AAM. The only requirement,
is that an ADP Model enforces that a type defined in a module of the topology should
be of a specific cloud Provider (see Figure 12).

Modules (Deployment Layer)

node_templates:
 <module_name>:
 type: <module_type> //shall be of concrete cloud
provider
 properties:
 <property_name> : <property_value>
 …

Figure 12. TOSCA YAML Schema for the Modules in the ADP

2.5. Case Studies specification in TOSCA YAML

In this section we validate the defined TOSCAL YAML specification by instantiating them
into the use cases of the SeaClouds Project, namely, Cloud Gaming and Softcare [8].

2.5.1. Cloud Gaming specification

Use case description
The Cloud Gaming use case consists on a platform that provisions, manages and runs
online games. Figure 13 depicts the different modules of the platform, and are detailed
below:

Figure 13. Cloud Gaming topology

D3.2 Discovery, design and orchestration functionalities 30

Webserver(s) are needed in order to make available the game to the players (nuro’s
clients) anything capable of processing http and https requests (i.e: apache2, nginx,
node.js, etc….)

● StaticServer (web space for the static data): some little static data like graphics
and a welcome index page for the audience of the game. from here the game
player is also able to register an account to start playing.

● GameApp: the brain of the game, the logic and the rules of how the game
works are written here in the PHP programming language.

● DataAnalytics: developed for evaluating the game internally (nuro’s privileged
information), to evaluate the current number of players, the weekly average
number of players, to find cheaters, to evaluate the progress and
acceptation/penetration of the game in the market, etc…

● Monitor: this module is responsible of accounting the amount of players as well
as the tendency (growing, decreasing) of each value monitored, the average in
several time periods (10 seconds, 1 minute, 1 hour, 1 day, 1 week, 1 month)

Object-relational database(s) are needed for storing and retrieving the data generated
by the game users.

● GameDB: A database with highly volatile data related to each player situation
and progress (playerID, player nick, player level, player score, player resources,
etc...)

● LogDB: A database with a log of all the actions and messages received and sent
by the player

● BackupDB: A database with backup information.

AAM specification

In this section we show how the AAM for the Cloud Gaming platform can be instantiated
following the TOSCA YAML specification. For readability reasons, here we present an
extract of the document, For the complete TOSCA YAML AAM file, the user may
download it from [3].

D3.2 Discovery, design and orchestration functionalities 31

Figure 14 Excerpt of the Cloud Gaming topology

We consider the topology subset shown in Figure 14, which is composed of the
GameApp, Game DB, LogDB and their relationships. GameApp connects to GameDB to
query or update the database, for instance, when users log-in to validate the password
or to perform an update of the status of the game. Similarly it updates the LogDB every
time an action must be logged.

We describe below some technical characteristics and QoS for that topology:

The AAM defines that the module game_app must be a IaaS with at least 4 cpus,
vertical scaling support and to be located in Germany. The game_db module must be
a PaaS that should be deployed in Germany. The log_db is a IaaS with at least 100 GB
of disk capacity.

These represents technical requirements and are defined in SeaClouds TOSCA YAML as
follows:

node_templates:
 game_app:
 type: seaclouds.nodes.Compute
 properties:
 location: seaclouds.types.Locations.Europe.Germany
 num_cpus: 4
 scaling_vertical: auto

 game_db:
 type: seaclouds.nodes.Platform
 properties:
 location: seaclouds.types.Locations.Europe.Germany
 mongoDB_support: true

D3.2 Discovery, design and orchestration functionalities 32

 log_db:
 type: seaclouds.nodes.Compute
 properties:
 disk_size: 100 GB

The relationships between these modules are described as follows:

 relationship_templates:
 game_app.update_status.to.game_db.update:
 type: seaclouds.relationships.Uses

 game_app.update_status.to.game_db.query:
 type: seaclouds.relationships.Uses
 properties:
 average_usage_count: 2

 game_app.update_status.to.log_db.log:
 type: seaclouds.relationships.Uses

 game_app.login.to.game_db.update:
 type: seaclouds.relationships.Uses

 game_app.login.to.game_db.query:
 type: seaclouds.relationships.Uses

 game_app.login.to.log_db.log:
 type: seaclouds.relationships.Uses

Finally, we define the operations. In particular we show game_app.login operation
assuming that it is hosted by game_app and requires to perform three operation
(query_db, update_db, update_log) each with their qos requirements. Similarly
we define the update_status operation.

node_templates:
 game_app.login:
 type: seaclouds.nodes.Logic
 requirements:
 - host: game_app
 - query_db:
 node: game_db.query
 relationship:
game_app.login.to.game_db.query
 - update_db:
 node: game_db.update
 relationship:
game_app.login.to.game_db.update
 - update_log:

D3.2 Discovery, design and orchestration functionalities 33

 node: log_db.log
 relationship: game_app.login.to.log_db.log

 game_app.update_status:
 type: seaclouds.nodes.Logic
 properties:
 qos_requirements:
 execution_time: 2.0
 qos_info:
 execution_time: 1.02
 benchmark_platform: seaclouds.nodes.amazonEC2
 requirements:
 - host: game_app
 - query_db:
 node: game_db.query
 relationship:
game_app.update_status.to.game_db.query
 - update_db:
 node: game_db.update
 relationship:
game_app.update_status.to.game_db.update
 - update_log:
 node: log_db.log
 relationship:
game_app.update_status.to.log_db.log

2.5.2. SoftCare specification

Use case description

The SoftCare solution is a software application that aims at developing an innovative
and integrated solution for the use of social inclusion tools by elderly people and for the
general management (self-management included) of their medical problems.

Figure 15 depicts the different modules of the SoftCare solution, which are described
below:

• Softcare Core app: A web service based application that has the main logic and
also acts as the interface between all the SoftCare solution main components.
It’s a SOAP based web services application developed in Java 1.7, running under
Tomcat, and using different frameworks (Apache CXF, Spring and Hibernate). It
requires a low response time and a very high availability. It also requires to be
deployed in a private PaaS.

• Softcare DB: The main database used by the Sofcare Core app. Requires MySQL

5.5 or higher.

D3.2 Discovery, design and orchestration functionalities 34

• Softcare Desktop client application: (This application won’t be deployed in any
cloud provider). It’s a desktop application used by the elderly people that will
connect with the Softcare Core app

• SoftCare Web applications: It consists on the Softcare Web client app and the

Softcare Web admin app. These modules are required to be deployed in a PaaS
with support for Java 1.7 and Tomcat. The Softcare Web client app requires to
be deployed in a public PaaS, whereas the Softcare Web admin app requires to
be deployed in a private PaaS.

• Forum Web application: a forum application that uses the Forum DB, and the

Multimeda Respository Application. It is required to be deployed in a PaaS with
support for Java 1.7 and Tomcat.

• Forum DB: database for the Forum Web application. It requires MySQL 5.6.

• Multimedia Repository Application: multimedia repository based on Lily Data

Repository. It is required to be deployed in a private IaaS, with Linux, Java 1.6,
Hadoop, HBase, ZooKeeper and SOLR.

• Services app: the Softcare solution also includes a Services application that will

connect to third party services offered by cloud providers (like an email delivery
service) in order to use them. It is required to be deployed in a public PaaS with
Java 1.7 and Tomcat support.

Figure 15. Softcare topology

D3.2 Discovery, design and orchestration functionalities 35

AAM specification

In this section we show how the AAM for the Cloud Gaming platform can be
instantiated following the TOSCA YAML specification. For readability reasons, here we
present an extract of the document. For the complete TOSCA YAML AAM file, the user
may download it from [3].

We will consider the topology subset shown in Figure 16, composed by Softcare Core
App and Sofcare DB also considering the relationship between them.

Figure 16. Excerpt of the SoftCare topology

First we define the two modules SoftcareCoreApp and SoftCareDB with their
requirements.

node_templates:
 SoftcareCoreApp:
 type: seaclouds.nodes.Platform
 properties:
 Java_support: true
 Java_version: [1.7,1.7]
 MySQL_support: true
 private_paas: true

 SoftcareDB:
 type: seaclouds.nodes.Platform
 properties:
 location: seaclouds.types.Locations.Europe
 MySQL_support: true
 MySQL_version: [5.5,5.7.5]

We establish the relationship between the core application and the DB and the one
describing the request of operation to the core application. Below we exploit the
TOSCA relationships.

relationship_templates:
 operationRequestTo.SoftcareApp:

D3.2 Discovery, design and orchestration functionalities 36

 type: seaclouds.realtionships.Uses
 SoftcareCoreApp.query.SoftcareDB:
 type: seaclouds.relationships.Uses

Then we define the quality of service requirements as Logic node templates. We
consider 99.9% as a measure of high availability and at most one second as low
response time.
In order to exemplify better how to define AAM we assume that the every operation
request to the core application requires querying the DB.

node_templates:
 operationRequest:
 type: seaclouds.nodes.Logic
 properties:
 qos_requirements:
 response_time: 1 s
 availability: 99.9
 requirements:
 - host: SoftcareCoreApp
 - query_db:
 node: SoftcareDB.query
 relationship: SoftcareCoreApp.query.SoftcareDB

3. Parser of TOSCA

As it was mentioned above, SeaClouds uses the TOSCA syntax to describe and
encapsulate in an agnostic manner the information provided by the different
components. For example, as we can see in Section 2.3.2, the features, capabilities,
requirements and other aspect of the cloud providers will be modelled using a subset of
the TOSCA specification which allows to take advantages of the standard.
In this section, we present the TOSCA parser which will be used by the different
SeaClouds components to process the information during the life-cycle of any
application management. Then, in order to facilitate the aforementioned task, the goals
of the TOSCA parser is provided a useful tool that allows the necessary SeaClouds
components to manage the TOSCA specification in a portable and reusable way.

TOSCA propose two representations to describe its syntax, XML and YAML. Although,
TOSCA Simple Profile in YAML was aimed to provide a more accessible syntax as well as
a more concise and incremental expressiveness of the standard, an application
description could become a very extensive YAML file that should be processed to use
the contained information. The main goals of the parser is to provide a unified and useful
tool that allows processing a TOSCA description and generating and object
representation. Thus, each SeaClouds component that needs to manage a TOSCA

D3.2 Discovery, design and orchestration functionalities 37

profile, both input and outputs, could use the parser to accomplish its work. Following,
we list the components which interacts potentially with the TOSCA parser:

● Dashboard: Saves the User Input in TOSCA.
● Discoverer: Saves the Cloud offers information in TOSCA.
● Planner (Matchmaker & Optimizer): Read the user input, read the discoverer

information, saves DAM in TOSCA
● Deployer: Reads the DAM in order to deploy and manage the application
● SLA: Reads the QoB from the DAM.

3.1. Using a TOSCA subset

TOSCA is a full-expressive standard which specify a particular methodology to describe
and wrap the cloud application structure (components and relationships), and how they
must be orchestrated (by means of a plan) in a portable way to increase a vendor-neutral
ecosystem. Moreover, they describe the mechanisms which must be implemented by
the clouds to support standard-based application deployment and management.
However, as we have mentioned previously, we adapt the standard specification to our
requirements so we will not use all features provided by TOSCA.

As we presented above, SeaClouds focuses on Nodes Types and Templates, Properties,
Capabilities for describing the clouds offering, and applications description such as AAM
and DAM. However, the implementation and management of the applications is not
addressed using the TOSCA mechanisms, we use more flexible technologies to this goals,
which will be implemented in the deployer. The definition and maintenance of an
orchestration plan is a complex and error-prone task. The plans have to define each
necessary step to deploy and configure the application taking into account all the
properties and requirements of the providers. Also, according to the current mechanism
proposed, the plan’s operations should be modified in case of changing the cloud
providers in which modules are deployed. This is because the modification of the
providers is performed by substituting the artefacts that implement the deployment
operations. In Figure 17, we can see a diagram that show the used and dropped TOSCA
elements in SeaClouds. The used elements are highlighted by a blue background, in the
same way the not used elements are indicated by a red background.
Taking in account these restrictions, the first draft of the proposed parser does not
address the processing of the orchestration plan and the implementations artefacts
management (such as the implementations of node types operations).

D3.2 Discovery, design and orchestration functionalities 38

Figure 17. The TOSCA elements which are used in SeaClouds.

Following these usage restrictions, several applications and cloud offering descriptions
examples are shown in previous sections.

3.2. Design decisions

In this sections, we describe the TOSCA parser that is designed according to the usage
restrictions of the elements.

As we have mentioned previously, the main goal of the parser is to generate an object
representation from a TOSCA description. The parser defines and implements a mapping
between TOSCA files and a Java object model representing them. In Figure 18, an UML
class diagram shows the Java representation of TOSCA concepts such as NodeTypes,
Properties, Capabilities, values, etc.

D3.2 Discovery, design and orchestration functionalities 39

Figure 18. TOSCA elements model.

The parser provides to any SeaClouds component an object representation of the basic
TOSCA elements, according to the schema specification. However, in many contexts in
SeaClouds components it is necessary to have a more specific representation of some
tosca types, for example for the matchmaking of cloud offerings description it may be
useful to have a java interface corresponding to NodeTypes
seaclouds.node.Compute or seaclouds.node.Platform. In this case the
specific interface can be bound to the generic NodeType or NodeTemplate object using
Java Proxy class [4]. The specific interfaces of the parser for the aforementioned
SeaClouds TOSCA documents such as the Cloud Offering, AAM, ADP and DAM are yet to
be defined because they are tightly bound to the actual implementation of the modules
using them.

D3.2 Discovery, design and orchestration functionalities 40

4. Discoverer

4.1. Discoverer Architecture & Design
The discoverer component of SeaClouds is responsible of providing the planner with
information about the available cloud offerings. In order not to rely on a single source
of information the architecture of the discoverer is modular. The main module
aggregates the information from the adapter modules and exposes it to the rest of the
SeaClouds platform. The adapter modules are responsible of converting the information
from heterogeneous sources into TOSCA YAML format for cloud offerings, which will
then be consumed by the main module. The modular approach allows also for easy
extension of the discoverer if some of the used sources of information becomes
unavailable and must be replaced. Figure 19 depicts the architecture of the Discoverer.

Figure 19. Discoverer architecture

4.2. Discoverer Modules
The adapter modules retrieve information from various sources. For example, different
cloud comparing services, an API which allows cloud provider themselves to announce
their own offerings, a module which allows for manual input of data, etc. The initial
modules that we define are the following:

4.2.1. CloudHarmony component
CloudHarmony [9] is a repository of cloud offerings of different nature. Most of the
information stored in CloudHarmony can be mapped to the required properties that are
defined in the cloud offering TOSCA YAML model used by SeaClouds. CloudHarmony
provides a query API which allows the information to be fetched in JSON format. The
discoverer CloudHarmony component fetches this data, converts it into TOSCA YAML
format and stores it in the Discoverer CORE.

4.2.2. PaaSify component
PaaSify [10] is the second directory that SeaClouds will rely on for populating the local
repository of cloud offerings. The PaaSify web site focuses mostly on two main strength
points: i. searching the repository can be performed by adding filters that shrink the size
to the suitable offerings according to the specified characteristics; ii. the accuracy of the
fetched data is hardly wrong because the repository is filled manually by users within
the community or by the administrator of the offered clouds himself.

D3.2 Discovery, design and orchestration functionalities 41

From the SeaClouds perspective, PaaSify will be used to populate the local repository of
cloud offerings, basically by getting the JSON files from to the PaaSify profile directory,
then convert them in TOSCA YAML, in such a way that they can be used locally by
SeaClouds. The PaaSify JSON files can be retrieved through Github.

4.2.3. Cloud advertisement
After launching the SeaCloud platform, we expect the cloud providers to be interested
in having their own offers listed in the SeaCloud discoverer directory, in order to increase
their visibility. We propose a model for which cloud providers can notify the SeaCloud
platform of updates to their offering, and provide the information in the TOSCA YAML
format for the Cloud Advertisement component. We see two possible strategies for this
interaction: the first one is the PUSH approach, where the cloud provider submits a list
of their updated services whenever changes occur, the second is the PULL approach,
where the cloud providers register a URL for their offers, with the updated list of cloud
offering that can be fetched when needed.

The PUSH approach has the advantage that the cloud providers do not have to setup a
URL with the purpose of advertising to SeaClouds, whereas the PULL approach allows
the cloud providers to advertise automatically to other frameworks beyond the scope
of SeaClouds.

4.2.4. Monitoring component
SeaClouds monitoring components will be deployed on various cloud services. The
monitoring results of these components can be used to as an alternate source of data
for some of the properties of the cloud offerings stored in the repository, in order to
complete or validate the information already present. The monitoring component of the
discoverer can get this information from the live model and update the data of the
repository accordingly.

4.2.5. Manual component
Even if automated systems are available, manually introducing cloud offerings
information should be kept as an option. Manually maintaining a list of cloud offerings
may in some cases have lower cost than maintaining the software for automatic
detection. On the other hand, some technical information may not be available in a
machine readable format for automatic detectors to read. Under these circumstances,
the manual intervention of an administrator could be preferred.

5. Planner

The Planner component is in charge of providing a set of deployment plans that define
where each application module will be deployed. Given an AAM the Planner will
generate a set of ADPs that meet the requirements specified by the user.

The generation of a deployment plan consists of two steps:

1. matchmaking the suitable offerings for each module;

D3.2 Discovery, design and orchestration functionalities 42

2. optimizing the set of suitable offerings reducing the number of possible
configurations.

5.1. Planner Architecture & Design
The planner architecture is composed, as shown in Figure 20, by three modules:
Matchmaker, Optimizer and DAMGenerator.

Figure 20. Planner Architecture.

At design time, in order to plan the deployment of an application, the Planner
component requires as input an AAM. At run time, for replanning, the Planner requires
also the information about the Live Model. The planner expose plan and replan as the
two main functionalities that, respectively address the first planning of an application
and the replanning process.

Figure 21 shows the sequence diagram for the planning process. The dashboard will
trigger the planner requiring its planning functionality and giving the AAM for the
application to be planned. The planner calls the Matchmaker that will get (a stream of)
cloud offerings from the discoverer and will look for the suitable offerings for each AAM
module. When the matchmaking process ends, the Planner requires the optimization
step from the Optimizer that will select a set of optimal deployment proposal. Finally,
for this set of deployment proposals, the DAM generator generates the DAM.

D3.2 Discovery, design and orchestration functionalities 43

Figure 21.Sequence diagram of planning

After the first successful deployment of an application with SeaClouds, it can happen
that for different reasons (e.g. monitoring or SLA violations) a replanning is required.
The process of replanning an application is similar to planning but, having already
deployed the application, the Planner can leverage the Live Model information to better
optimize the deployment proposals. In particular the Live model contains runtime
information about the actual deployed application and the causes that triggered the
replanning process.
Figure 22 shows the sequence diagram for replanning.

Figure 22. Sequence diagram of replanning

D3.2 Discovery, design and orchestration functionalities 44

5.2. Planner Modules

5.2.1. Matchmaking
The Matchmaker is in charge of matching the user requirements for the different
modules as described in the AAM with the actual offerings from the Discoverer of
SeaClouds (see Figure 23).

Figure 23. Design view of the Matchmaker

Input
The input for the matchmaker is a set of application modules and a set of cloud offerings.

Output
The output of the matchmaker is the collection of matching offerings for each module.

Assumptions
The matchmaker assumes that, for each functional property, the value domain of such
property has a partial order (e.g. more cpu cores are better than less).

Matchmaking Process
The matchmaking process looks for every cloud offering that fulfil the technical
requirements defined into the modules of the AAM.
The matchmaker assumes that each module contains a set of technical requirements
and that a (partial) order is defined for each technical requirement.

D3.2 Discovery, design and orchestration functionalities 45

A suitable offering for a module is a cloud offering that has equal or better (according to
the ordering for each property) properties for all the defined technical requirements in
the module.

5.2.2. Optimization

This section describes the interfaces offered by the optimization module and the design
of its internal behaviour. The goal of the optimization module is to provide the planner
with an optimization problem solving method, which can find an appropriate
orchestration of the cloud services. That is, whereas the Matchmaker identifies the
cloud offerings that meets the requirements at the module level, the Optimizer
identifies the compositions that satisfies the global application requirements (e.g.,
application’s performance and availability) while minimizing both the cost incurred on
the usage cloud computing resources and the effort on the migration of modules (the
latter is only considered if the optimization module is invoked during a reconfiguration
process of replanning).

Offered interfaces

Optimization module offers the following methods:
● Optimize(String AAM, String suitableCloudOffers)

This method produces a set of candidate partial plans where, in each plan, each module
is associated to one and only one cloud service. In case of being possible to define the
number of replicas of a service, the information for the deployment of the application
module over such service is enhanced with the initial number of replicas to use that is
suitable to deal with the application expected utilization and satisfy its performance and
availability requirements. More information about the interface and invocation of
Optimize method is provided in [5].

● Reoptimize(String AAM, String cloudOffers, String currentDAM, String
reasonOfReplanning)

This method produces a set of candidate partial reconfiguration plans. In each of these
candidates it is specified the information for changing from the current DAM that is no
longer valid to a computed alternative deployment that overcomes the current DAM
problems. In case of being possible to define the number of replicas of a service; then
the information for the deployment of the application module over such service is
enhanced with the initial number of replicas to use that is suitable to deal with the
application expected utilization and satisfy its performance and availability
requirements.

Internal behaviour

D3.2 Discovery, design and orchestration functionalities 46

The design of Optimize method regarding its required and provided information is
illustrated in Figure 24, while the sequence diagram is illustrated in Figure 25 and
described below.

Figure 24. Design view of Optimize method interfaces

As presented in the interfaces description, optimizer receives an invocation of its
method “optimize” with parameters AAM, and suitableCloudOffers. First, it uses
operations getTopology, getQoSinformation and getCloudOffers of TOSCA parser to
obtain its required information in a structured manner, which includes:

● Information of the application topology, dependencies between modules and the

set of suitable cloud offers for each module, which are stored in the AAM.

● The QoS information of the application, which comprises the QoS requirements and
QoS properties that are necessary for calculating its quality (e.g., for computing the
expected performance of the application, it is necessary to know the expected
number of user requests per minute that it will have to serve), which are stored in
the AAM.

● Information regarding the properties of each of the suitable cloud offers (e.g., its
capability to scale horizontally, availability, etc.), which are stored in
suitableCloudOffers.

D3.2 Discovery, design and orchestration functionalities 47

After this information has been collected, it is created the object that implements the
optimization problem solving. The optimizer implements more than one optimization
problem solving methods.
The decision of which one should be used is a decision of the optimizer component itself
since but the SeaClouds user is not required to be an expert in this domain, but it is
helpful for further research goals in order to compare the behaviour of different
methods.

After this, it is invoked the method solve of the instantiated optimization problem
solving method having as parameters the application topology, information of cloud
offers, application QoS requirements and application QoS properties. This output of this
method consists of a list with the best solutions it has been able identify.

Figure 25. Sequence diagram of Optimize

Regarding the internals of solve method, the rest of the Sequence Diagram provides a
high level view of the their behaviour. Slight variations in this behaviour are possible,
according to the particularities of the actual optimization method instantiated in each
case. The design view provided in the rest of the sequence diagram extends the view of

D3.2 Discovery, design and orchestration functionalities 48

the optimizer behavior provided in an algorithmic form in D3.1 [1] since it concretizes
the classes and objects that implement the optimization operations such algorithm.
There is a large matching between the operations in the first specification algorithm in
D3.1 [1] and the operations in the sequence diagram in Figure 25, notwithstanding the
matching is not complete. The reason is that the requirements for the optimizer have
changed during this time interval. Some examples of differences are:

● In D3.1 [1] it was assumed that the optimizer provided only one candidate
solution -the one that the fitness function considered the best- while the current
optimizer requirements are that a list of candidates is provided to the user -the
list of the N candidates that the fitness function considered the best ones- and
s/he can choose one among them.

● In the first design provided in D3.1 [1] the fitness function was responsible for

both compute the quality attributes of a candidate with respect to different
properties (e.g., performance and availability) and to calculate the fitness of a
candidate from these quality attributes. In the current design the calculation of
the fitness of a candidate still uses its quality attributes but the computation of
such quality attributes is decoupled from the fitness function itself. Moreover,
the fitness calculation of a candidate is also decoupled from the concrete search
method used in each moment. These decisions were taken to improve the
maintainability and extensibility of the optimizer, allowing easier additions of
SearchMethod and FitnessCalculation. In this way, the set of implemented search
methods is more easily extendable since they do not need to implement a fitness
function but reuse one of the already existent ones. Accordingly, since the
calculation of QoS attributes is not dependent of the optimization method or
fitness function used but they are related to other research areas (e.g., to the
Software Performance Evaluation [Smith] in the case of computing the
application expected response time), we have decide to include these
capabilities in a package different from the optimization methods and fitness
functions. Following the current design, the set of SearhMethod and
FitnessCalculation is more easily extendable. As a corollary, this separation
increases also the trustability of the comparison between optimization methods
due to the execution of the same code for the QoS analysis and evaluation
solution fitness.

In this context, the solve method first generates a random set of initial solution
candidates. For each candidate it calculates its quality attributes and, using such
attributes and the quality requirements, its fitness value.
At this point, an iterative process of optimization begins its execution using the initial
random set of candidates. It will finish when a “finishingCondition” is satisfied. The firsts
operations inside the iterative process create the next generation of solutions using the

D3.2 Discovery, design and orchestration functionalities 49

set of current candidate solutions. The algorithm to produce the next possible solutions
follows the two step optimization process given in D3.1 [1] (i.e., a first step for deciding
the cloud provider and a second step for the choice of a concrete offer among the
suitable set of the provider), while its particularities are completely dependent on the
optimization problem solving method implemented. Next, it is calculated the fitness of
each solution in the new generation. The last operation of the iterative process (called
chooseNextCandidates in Figure 25) consists in choosing as candidate solutions the
“appropriate” ones from the set of current candidate solutions and next generation
according to the optimization method instantiated. This operation is also completely
dependent of the optimization method instantiated, hence the choice of next
candidates may not correspond to the selection of the possible solutions with the
highest fitness values. When “finishingCondition” of the iterative process is satisfied,
solve method returns the N alternatives with best fitness among the current list of
candidate solutions.

5.2.3. DAM generation
The DAM generation process starts after the Optimizer has obtained the ADPs and the
user has selected the most suitable one. This process consists on transforming the
selected ADP into a fully deployable model in the form of DAM. To this end, more
information has to be introduced in the model (e.g. credentials, reconfiguration
policies,…). Such information is retrieved by asking the user the missing information
required by the Deployer, and including this information using the TOSCA specification.

The DAM generation process is heavily dependant on the Deployer component. The
integration with the Deployer will be consolidated in subsequent deliverables and will
drive the technical details and design decisions for the transformation of the
orchestrated solution in ADP into an automatically deployable model in DAM.

D3.2 Discovery, design and orchestration functionalities 50

6. Conclusions

In this deliverable we have described the process and artefacts for the generation of a
deployment plan that orchestrates the different modules of the application.
In the first part of the deliverable, we have consolidated the Application Model Lifecycle,
which includes the AAM, Cloud Offerings, ADP, DAM, and Live Model. Secondly, we have
elicited the required pieces of information that should be present in the models used
for the generation of a deployment plan. Then we have described how these elements
are represented: first by means of a graphical human-readable model, and then by a
formal machine-readable TOSCA YAML specification. Finally, we have validated the
specification on the use cases of Cloud Gaming and Softcare.
In the second part, we have described the architecture and design of the different
components of SeaClouds that are involved in the generation of a deployment plan. We
have defined the structure and design of the Parser of TOSCA YAML, which builds an
object-oriented representation of the TOSCA YAML model; and then we have described
the design and architecture of the components of SeaClouds involved in the generation
of the deployment plan. Namely, the Discoverer and the Planner.

D3.2 Discovery, design and orchestration functionalities 51

7. References

[1] SeaClouds Project Team, Public Project Deliverable. “D3.1. Discovery, Design and
Orchestration Functionalities: First Specification”, October 2014.

[2] SeaCloud Project Team, Public Project Deliverable. “D2.1 Requirements for the
SeaClouds Platform. V1.5”, March 2015.

[3] Repository of TOSCA YAML files
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner/core/src/m
ain/resources

[4] Java Dynamic Proxy Specification
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.htm

[5] SeaCloud Project Team, Public Project Deliverable. “D4.5 Unified dashboard and revision
of Cloud API“, March 2015.

[6] OASIS, “TOSCA Simple Profile in YAML Version 1.0”, Committee Specification Draft
02, December 2014.

[7] OASIS, “Topology and Orchestration Specification for Cloud Applications, v1.0”, 2013.
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[8] SeaCloud Project Team, “D6.1 Case study extended description”, 2014

[9] CloudHarmony web page https://cloudharmony.com/ (last retrieved March 2015)

[10] Paasify Comparative and Supported Providers. http://www.paasify.it/vendors (last
retrieved March 2015)

https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner/core/src/main/resources
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner/core/src/main/resources
https://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.htm
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://cloudharmony.com/
https://cloudharmony.com/
https://cloudharmony.com/
https://cloudharmony.com/
https://cloudharmony.com/
https://cloudharmony.com/
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors
http://www.paasify.it/vendors

	List of figures
	List of tables

	1. Introduction
	1.1. Glossary of Acronyms

	2. Specification of Application Properties and requirements
	2.1. Application Model Lifecycle
	2.2. Topology and properties required
	2.2.1. Topology
	2.2.2. IaaS & PaaS properties
	Groups of properties
	Database Support (PaaS)

	2.3. Graphical TOSCA Model
	2.3.1. AAM TOSCA Model
	2.3.2. Cloud Offerings TOSCA Model
	2.3.3. ADP Model
	2.3.4. DAM and Live Model

	2.4. TOSCA YAML schema
	2.4.1. AAM
	2.4.2. Cloud Offerings
	2.4.3. ADP Model

	2.5. Case Studies specification in TOSCA YAML
	2.5.1. Cloud Gaming specification
	AAM specification

	2.5.2. SoftCare specification
	AAM specification

	3. Parser of TOSCA
	3.1. Using a TOSCA subset
	3.2. Design decisions

	4. Discoverer
	1.
	2.
	3.
	4.
	4.1. Discoverer Architecture & Design
	4.2. Discoverer Modules
	4.2.1. CloudHarmony component
	4.2.2. PaaSify component
	4.2.3. Cloud advertisement
	4.2.4. Monitoring component
	4.2.5. Manual component

	5. Planner
	5.1. Planner Architecture & Design
	5.2. Planner Modules
	5.2.1. Matchmaking
	Input
	Output
	Assumptions
	Matchmaking Process

	5.2.2. Optimization
	5.2.3. DAM generation

	6. Conclusions
	7. References

