

SeaClouds Project
D3.3 - SeaClouds discovery and

adaptation components prototype
Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based

applications
Call identifier FP7-ICT-2012-10
Grant agreement no. 610531
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP3 SeaClouds Design-Time modelling and orchestration
Deliverable code D3.3
Deliverable Title SeaClouds discovery and adaptation components prototype
Nature Prototype
Dissemination Level Public
Due Date: M22
Submission Date: 31st August 2015
Version: 1.0
Status Final
Author(s): Marc Oriol (UPI), Diego Perez (Polimi), Simone Zenzaro (UPI),

Mattia Buccarella (UPI), Javi Cubo (UMA)

Reviewer(s) Francesco D’Andria (ATOS)

1 D3.3 – SeaClouds discovery and adaptation components prototype

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 08/07/15 First ToC Marc Oriol (UPI)

0.2 10/07/15 First contributions Marc Oriol (UPI)

0.3 14/07/15 Second contributions Marc Oriol (UPI)

0.4 15/07/15 Added the optimizer part Diego (Polimi)

0.5 20/07/15 contributions/check on technical details and
synchronization

Diego (Polimi), Simone
Zenzaro (UPI), Mattia
Buccarella (UPI), Javi Cubo
(UMA)

0.6 09/08/15 Final contributions before internal review Marc Oriol (UPI)

0.7 25/08/15 Revision Francesco D’Andria (ATOS)

1.0 01/09/15 Final changes and formatting. Marc Oriol (UPI)

2 D3.3 – SeaClouds discovery and adaptation components prototype

Table of Contents
Table of Contents .. 2

List of Figures .. 3

Executive Summary ... 4

1. Introduction ... 5

1.1. Scope and outcome of the Deliverable .. 5

1.2. Glossary of Acronyms .. 5

2. Architectural Overview ... 6

3. Discoverer .. 7

3.1. Architecture & Design ... 7

3.1.1. CloudHarmony component ... 8

3.1.2. PaaSify component ... 8

3.1.3. Manual component .. 9

3.1.4. Cloud advertisement .. 9

3.1.5. Monitoring component .. 9

3.2. Implementation .. 10

3.3.1. Discoverer API .. 11

4. Planner ... 13

4.1. Architecture & Design ... 13

4.2. Implementation .. 16

3.3.2. Web service layer ... 17

3.3.3. Matchmaker ... 19

3.3.4. Optimizer ... 19

4. How to get and install the SeaClouds Integrated Platform .. 22

4.4 Local Deployment ... 22

4.5 Launching in the clouds ... 23

5. Conclusions .. 23

6. References ... 24

3 D3.3 – SeaClouds discovery and adaptation components prototype

List of Figures
FIGURE 1. SEACLOUDS ARCHITECTURE.. 6
FIGURE 2. HIGH-LEVEL ARCHITECTURE OF THE DISCOVERER ... 8
FIGURE 3. DISCOVERER TECHNICAL ARCHITECTURE .. 10
FIGURE 4. SEQUENCE DIAGRAM OF THE DISCOVERER MODULES .. 11
FIGURE 5. PLANNER ARCHITECTURE. .. 14
FIGURE 6. SEQUENCE DIAGRAM OF PLANNING TO GENERATE A LIST OF ADPS .. 15
FIGURE 7. SEQUENCE DIAGRAM OF PLANNING TO GENERATE THE DAM ... 15
FIGURE 8. SEQUENCE DIAGRAM OF REPLANNING TO GENERATE THE LIST OF ADPS .. 16
FIGURE 9. SEQUENCE DIAGRAM OF PLANNING TO GENERATE THE DAM ... 16

4 D3.3 – SeaClouds discovery and adaptation components prototype

Executive Summary

This deliverable describes the implementation of the discovery, design and orchestration
functionalities. Firstly, we describe and architectural overview of the SeaClouds platform for
both design time and execution time. Then we go in depth in the components involved on
these activities, namely the Discoverer and the Planner, describing first its architecture and
then their technical details accompanied with sequence diagrams and their API
specifications.

The code of such implementation is released under Apache 2.0 license and can be
downloaded from the SeaClouds Platform github repository
https://github.com/SeaCloudsEU.

https://github.com/SeaCloudsEU

5 D3.3 – SeaClouds discovery and adaptation components prototype

1. Introduction

1.1. Scope and outcome of the Deliverable

This deliverable describes the implementation of the discovery and adaptation components
of the SeaClouds Platform, accompanied with the architectural definition, the relationship
between components, and their technical details.

The SeaClouds project is an open source software released under Apache 2.0 license and
the released prototype can be downloaded from the SeaClouds Platform github repository
https://github.com/SeaCloudsEU.

1.2. Glossary of Acronyms

Acronym Definition
AAM Abstract Application Model
ADP Abstract Deployment Plan
API Application Programming Interface
DAM Deployable Application Model
IaaS Infrastructure-as-a-Service
PaaS Platform-as-a-Service
QoB Quality of Business
QoS Quality of Service
SLA Service Level Agreement
SLO Service Level Objective
TOSCA Topology and Orchestration Specification for Cloud Applications
UML Unified Modelling Language
URL Uniform Resource Locator
WP Work Package
YAML YAML Ain't a Markup Language

Table 1. Acronyms

https://github.com/SeaCloudsEU

6 D3.3 – SeaClouds discovery and adaptation components prototype

2. Architectural Overview
This section describes the architectural overview of the SeaClouds platform. In Figure 1 we
illustrate the current version of the architecture which was refined from Deliverable D5.1.2
[1] considering the implementation and design decisions taken during the development of
the platform.

Figure 1. SeaClouds Architecture

Below we describe the architecture focusing on the Planner and Discoverer components for
both design and runtime execution.

Design time

SeaClouds is orchestated by the Dashboard/SeaClouds API. The initial input for SeaClouds is
an abstract application, which is instantiated by the user and described through an Abstract
Application Model (AAM) [2]. This model contains the definition of all the modules of the
application, their relationships, and the user’s requirements. These requirements are both
technical and QoS requirements that may apply to the whole application and/or to the
constituent modules. Then, the planner interacts then with the Discoverer, which provides a
list of Clouds Offerings from service providers with information regarding their technical
characteristics and QoS information.

7 D3.3 – SeaClouds discovery and adaptation components prototype

These models are processed by internal components of the Planner, namely the
Matchmaker and the Optimizer, which generate as output a list of Abstract Deployment
Plans (ADPs). In an ADP, the different modules of the cloud application are instantiated by
concrete services that provide the functionality required, meeting the technical and QoS
requirements.

The list of ADPs are sent back to the user in order to let her choose the most suitable cloud
composition to her interests. Once the ADP has been selected, it is sent to the DAM
Generator which augments the information specified in the ADP and generates a Deployable
Application Model (DAM). The DAM contains the information needed by the SeaClouds
Deployer to deploy, configure and execute the application (e.g. with all the required
information about credentials).

Execution time

During execution, a Live Model keeps track of the status of all application’s modules and it is
used for supporting the dynamic evolution of the application. The Live Model exposes the
deployment status process to the Deployer API. If there is a violation on the QoS, SeaClouds
executes a repairing action (e.g. by scaling Virtual Machines). If such repairing action is not
capable or restoring the required QoS a replanning action is triggered. In this case, the
Planner generates a new DAM. Details about repairing policies at execution time of the
SeaClouds platform are described in [3].

In the following sections we describe in detail the implementation of the Discoverer and
Planner components

3. Discoverer

3.1. Architecture & Design

The discoverer component of SeaClouds is responsible of providing the planner with
information about the available cloud offerings for both IaaS and PaaS from several cloud
providers. In order not to rely on a single source of information, the architecture of the
discoverer is modular.

The main module of the Discoverer, the core, aggregates the information from several
modules and exposes it to the rest of the SeaClouds platform. The different modules are
responsible of converting the information from heterogeneous sources in different formats

8 D3.3 – SeaClouds discovery and adaptation components prototype

into the standard TOSCA YAML format for cloud offerings, which will then be consumed by
the core. The modular approach allows also for easy extension of the discoverer if some of
the used sources of information becomes unavailable and must be replaced. Figure 2
depicts the High-level architecture of the Discoverer as defined in [2].

Figure 2. High-level architecture of the Discoverer

The different modules are described below:

3.1.1. CloudHarmony component
CloudHarmony [4] is a repository of cloud offerings of different nature. The information
stored in CloudHarmony is mapped to the required properties that are defined in the cloud
offering TOSCA YAML model used by SeaClouds. CloudHarmony provides a query API which
allows the information to be fetched in JSON format. The discoverer CloudHarmony spider
fetches this data, converts it into TOSCA YAML format and stores it in the Discoverer CORE.

3.1.2. PaaSify component
PaaSify [5] is the second directory that SeaClouds relies on for populating the local
repository of cloud offerings. The PaaSify web site focuses mostly on two main strength
points: i. searching the repository can be performed by adding filters that shrink the size to
the suitable offerings according to the specified characteristics; ii. the accuracy of the
fetched data is hardly wrong because the repository is filled manually by users within the
community or by the administrator of the offered clouds himself.

From the SeaClouds perspective, PaaSify will be used to populate the local repository of
cloud offerings, basically by getting the JSON files from to the PaaSify profile directory, then
convert them in TOSCA YAML, in such a way that they can be used locally by SeaClouds. The
PaaSify JSON files can be retrieved through Github.

9 D3.3 – SeaClouds discovery and adaptation components prototype

3.1.3. Manual component
Even if automated systems are available, manually introducing cloud offerings information
should be kept as an option. Manually maintaining a list of cloud offerings may in some
cases have lower cost than maintaining the software for automatic detection. On the other
hand, some technical information may not be available in a machine readable format for
automatic detectors to read. Under these circumstances, the manual intervention of an
administrator could be preferred.

3.1.4. Cloud advertisement
After launching the SeaCloud platform, we expect the cloud providers to be interested in
having their own offers listed in the SeaCloud discoverer directory, in order to increase their
visibility. We propose a model for which cloud providers can notify the SeaCloud platform of
updates to their offering, and provide the information in the TOSCA YAML format for the
Cloud Advertisement component. We see two possible strategies for this interaction: the
first one is the PUSH approach, where the cloud provider submits a list of their updated
services whenever changes occur, the second is the PULL approach, where the cloud
providers register a URL for their offers, with the updated list of cloud offering that can be
fetched when needed.

The PUSH approach has the advantage that the cloud providers do not have to setup a URL
with the purpose of advertising to SeaClouds, whereas the PULL approach allows the cloud
providers to advertise automatically to other frameworks beyond the scope of SeaClouds.

3.1.5. Monitoring component
SeaClouds monitoring components will be deployed on various cloud services. The
monitoring results of these components can be used to as an alternate source of data for
some of the properties of the cloud offerings stored in the repository, in order to complete
or validate the information already present. The monitoring component of the discoverer
can get this information from the live model and update the data of the repository
accordingly.

10 D3.3 – SeaClouds discovery and adaptation components prototype

3.2. Implementation

During the implementation phase, the aforementioned high-level architecture of the
discoverer has been refined to a technical low-level architecture, which is depicted in Figure
3. The code of the Discoverer is available at
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/discoverer.

Figure 3. Discoverer technical architecture

The different modules are implemented as spiders that crawls the information from the
different sources and converts them into TOSCA YAML format. Currently the ones
implemented are the PaaSify Spider and CloudHarmony Spider. These spiders are managed
by a Spider Manager, which continuously updates the repository of the discoverer. The
Discoverer also offers a REST API which is used for both (1) manually insert cloud offerings
directly in TOSCA YAML and (2) retrieve the cloud offerings of the repository.

The Discoverer is composed of several pluggable modules and a core Information system.
The core information system stores the different cloud offerings and their properties in
TOSCA YAML standard. This information is obtained by the different modules, which follow
different strategies and have different capabilities according to the strategy. In Figure 4 we

https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/discoverer

11 D3.3 – SeaClouds discovery and adaptation components prototype

show the sequence diagram of how the Spider Manager interacts with the different
components of the discoverer.

Figure 4. Sequence diagram of the Discoverer modules

3.3.1. Discoverer API
The Discoverer provides the following API though its web service layer:

- Add cloud offering: adds a cloud offering to the discoverer directly in TOSCA YAML
format.

- Delete cloud offering: removes a cloud offering from the discoverer
- Fetch offering: obtains the properties of the cloud offering
- Retrieve offering IDs: obtains the list of offerings IDs to allow the iteration of the

cloud offerings and their properties from the information system. (used by the matchmaker)

12 D3.3 – SeaClouds discovery and adaptation components prototype

ID addOffer

Description Adds a cloud offering to the discoverer.

Parameters (CloudOfferingDocument) cloudOffering, a cloud offerings in YAML
format to be included into the discoverer.

Response (String) offer_id, the identifier of the cloud offering added in the
discoverer.

ID delOffer

Description Removes a cloud offering of the discoverer.

Parameters (String) offer_id a cloud offering ID to remove from the discoverer.

Response (Boolean) Success, true if the database was updated successfully.

ID fetchOffer

Description Get the definition of a cloud offering given its identifier.

Parameters (CloudOfferingId) cloudOfferingId, the unique id of the cloud offering.

Response (CloudOfferingDocument) cloudOffering, a TOSCA document containing
the node type definition corresponding to the required cloud offering ID.
If no cloud offering exists for the given ID NULL is returned .

13 D3.3 – SeaClouds discovery and adaptation components prototype

ID enumerateOffers

Description Get an enumerator pointing to the first cloud offering. Used by the
matchmaker to enumerate all the available offerings and fetch them one
at a time.

Parameters

Response (CloudOfferingEnumerator) enumerator, the head of a linked list of the
offers in the database.

4. Planner

4.1. Architecture & Design

The Planner component is in charge of providing a set of deployment plans that define
where each application module will be deployed. Given an AAM the Planner generates a set
of ADPs that meet the requirements specified by the user.

The generation of a deployment plan consists of two steps:

1. matchmaking the suitable offerings for each module;
2. optimizing the set of suitable offerings reducing the number of possible

configurations.

The planner architecture is composed, as shown in Figure 5, by three modules:
Matchmaker, Optimizer and DAMGenerator.

14 D3.3 – SeaClouds discovery and adaptation components prototype

Figure 5. Planner Architecture.

At design time, in order to plan the deployment of an application, the Planner component
requires as input an AAM. At run time, for replanning, the Planner requires also the
information about the Live Model. The planner expose plan and replan as the two main
functionalities that, respectively address the first planning of an application and the
replanning process.

Figure 6 and Figure 7 show the sequence diagram for the planning process. The dashboard
triggers the planner requiring its planning functionality and giving the AAM for the
application to be planned. The planner calls the Matchmaker that gets (a stream of) cloud
offerings from the discoverer and looks for the suitable offerings for each AAM module.
When the matchmaking process ends, the Planner requires the optimization step from the
Optimizer that will select a set of optimal deployment proposal. Finally this set of
deployment proposal, instrumented as ADPs, are sent back to the user who is in charge of
choosing the most promising plan among the set of optimized ADPs. Finally,the DAM
generator generates the DAM that has all the information required to deploy the system.
Currently the DAM Generator is in charge of augmenting the ADP with information
regarding: cloud credentials, monitoring information and SLAs by invoking different services
that provides such information.

15 D3.3 – SeaClouds discovery and adaptation components prototype

Figure 6. Sequence diagram of planning to generate a list of ADPs

Figure 7. Sequence diagram of planning to generate the DAM

After the first successful deployment of an application with SeaClouds, it can happen that
for different reasons (e.g. monitoring or SLA violations) a replanning is required. The process
of replanning an application is similar to planning but, having already deployed the
application, the Planner can leverage the Live Model information to better optimize the
deployment proposals. In particular the Live model contains information about the actual
deployed application and the causes that triggered the replanning process. Figure 8 and
Figure 9 shows the sequence diagrams for replanning.

16 D3.3 – SeaClouds discovery and adaptation components prototype

Figure 8. Sequence diagram of replanning to generate the list of ADPs

Figure 9. Sequence diagram of planning to generate the DAM

4.2. Implementation
In this section we describe the available methods that are offered from the Planner API and
its subcomponents. The code of the Planner is available at
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner.

https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner

17 D3.3 – SeaClouds discovery and adaptation components prototype

3.3.2. Web service layer

ID plan

Description Implements the process of requiring application planning. Given the
Abstract Application Model as TOSCA YAML input, the planner performs
matchmaking and optimization by invoking the methods match and
optimize respectively. The output of this process is a set of optimized
deployment proposal for the given application.

Parameters (AAM) model, the Abstract Application Model for which planning is
required

Response (Set<ADP>) deploymentModels, a set of optimized deployment proposal
models

ID match

Description The planner offers to the user the option of performing matchmaking (i.e
only the first step of the planning process). This method invokes the
internal component Matchmaker, which implements the functionality.

Parameters (AAM) model, the Abstract Application Model in TOSCA YAML for which
matchmaking is required

Response (Map<ModuleName, CloudOfferingDocument>) matchingOffers, a map
associating a set of possible cloud offerings to e each module in the input
Abstract Application Model.

ID optimize

Description The planner offers to the user the option of performing optimization (i.e.
only the second step of the planning process). This method, invokes the
internal component Optimizer, which implements the functionality.

Parameters (AAM) model, Abstract Application Model in TOSCA YAML that contains
the information of application modules, application topology, QoS

18 D3.3 – SeaClouds discovery and adaptation components prototype

requirements, QoS properties and names of cloud services that can be
used for each module in an AAM

(Map<ModuleName, CloudOfferingDocument>) suitableCloudOffers, a
map from the Abstract Application Model modules to the set of matching
cloud offers containing the information retrieved by the Discoverer
module of suitable cloud services and information regarding
communication capabilities of clouds

Response (Set<ADP>) candidatePartialPlans, the output is an set of candidate
partial plans where, in each plan, each module is associated to one and
only one cloud service. The internal optimization problem aims at
satisfying the performance and/or availability requirements while
minimizing the expected expenses on using computing cloud resources
assuming that they are used in a “pay-as-you-go” settings

ID damgen

Description Generates the Deployment Application Model from the Abstract
Deployment Plan. To do so, it interacts with the user to obtain additional
information regarding credentials,policies, etc. that is required to perform
the deployment.

Parameters (ADP) deploymentModel, the Abstract Deployment Plan in TOSCA YAML.

Response (DAM) deploymentModel, The Deployable Application Model in TOSCA
YAML with the required information to perform the deployment.

ID replan

Description Implements the replanning phase for a running application. The Planner
takes the Abstract Application Model and the current Live Model for the
user application. The Live Model provides also the information about
replanning cause. The output of this process is a set of optimized
deployment proposal for the given application.

Parameters (AAM) abstractModel, the Abstract Application Model in TOSCA YAML for

19 D3.3 – SeaClouds discovery and adaptation components prototype

which replanning is required

(DAM) liveModel, the current Live Model containing also the
informations about violations and replanning causes

Response (Set<ADP>) deploymentProposals, a set of optimized deployment
proposal models

3.3.3. Matchmaker

The Matchmaker iterates the list of available cloud offerings from the Discoverer and selects
those which are suitable to implement the modules of the application given the requisites
from the user.

Interface

ID match

Description Implements the matching process. Given the Abstract Application Model
for the application, each module is matched with available cloud offers
according to its functional properties. The mapping between modules and
matching offers is returned.

Parameters (AAM) model, the Abstract Application Model in TOSCA YAML for which
matchmaking is required

Response (Map<ModuleName, CloudOfferingDocument>) matchingOffers, a map
associating a set of possible cloud offerings to each module in the input
Abstract Application Model.

3.3.4. Optimizer

SeaClouds planning activity provides an optimization step where it is searched the solution -
among the ones that are able to satisfy all the requirements given by the user- that is
expected to furnish the best trade-off between its performance, availability and cost
properties. In case of replanning, the also optimization process also takes into account an

20 D3.3 – SeaClouds discovery and adaptation components prototype

additional parameter for the trade-off study: the “number of migrations” required to
change the application deployment from its current deployment to the one represented in
the candidate solution.

The current prototype includes the following search-based optimization methods: hill-
climbing, which finds local optimum; simulated annealing, which performs a partial
exploration of the search space aiming to find the global optimum; and blind-search, which
works as a random search of different candidate solutions and keeps the best one. Blind-
search has been implemented as initial proof-of-concept of the Optimizer module, and
currently it acts as a baseline to evaluate the goodness of the rest of methods implemented.

Interface

The interface of Optimizer methods was defined in D4.5 [6]. The following tables retrieve
them in order to complete some details that lacked in the previous API description in D4.5.

ID optimize

Description It produces a set of candidate partial plans where, in each plan, each
module is associated to one and only one cloud service.

Parameters (AAM) model, Abstract Application Model in TOSCA YAML that contains
the information of application modules, application topology, QoS
requirements, QoS properties and names of cloud services that can be
used for each module in an AAM.

(Map<ModuleName, CloudOfferingDocument>) suitableCloudOffers , a
serialized map from the Abstract Application Model modules to the set of
matching cloud offers containing the information retrieved by the
Discoverer module of suitable cloud services and information regarding
communication capabilities of clouds.

Response (Set<ADP>) candidatePartialPlans, the output is an set of candidate
partial plans serialized in TOSCA YAML where, in each plan, each module
is associated to one and only one cloud service. The internal optimization
problem aims at satisfying the performance and/or availability
requirements while minimizing the expected expenses on using
computing cloud resources assuming that they are used in a “pay-as-you-

21 D3.3 – SeaClouds discovery and adaptation components prototype

go” settings.

ID reoptimize

Description It produces a set of candidate partial reconfiguration plans where each
plan specifies the modules to migrate and their target cloud service

Parameters (AAM) model, Abstract Application Model in TOSCA YAML that contains
the information of application modules, application topology, QoS
requirements, QoS properties and names of cloud services that can be
used for each module in an AAM.

(Map<ModuleName, CloudOfferingDocument>) suitableCloudOffers , a
serialized map from the Abstract Application Model modules to the set of
matching cloud offers containing the information retrieved by the
Discoverer module of suitable cloud services and information regarding
communication capabilities of clouds.

(ADP) oldModel, deployment model in TOSCA YAML that was used to
deploy the application before replanning triggered.

(LiveModel) liveModel, model containing real time information about the
application currently deployed, including the violation which triggered the
replanning.

Response (Set<ADP>) candidatePartialReconfigurationPlans, the response is a set
of candidate partial reconfiguration plans serialized in TOSCA YAML,
where, in each of these candidates it is specified the information for
changing from the current DAM that is no longer valid to a computed
alternative deployment that overcomes the current DAM problems. The
internal optimization problem aims at satisfying the performance and/or
availability requirements while minimizing both the expected expenses on
using computing cloud resources assuming that they are used in a “pay-
as-you-go” settings and the application modules that need to be migrated
from their current deployment.

22 D3.3 – SeaClouds discovery and adaptation components prototype

4. How to get and install the SeaClouds Integrated Platform

SeaClouds project has a Continuous Integration chain in place. This allows to have all the
binaries produced by each software component of SeaClouds to be always available from
https://oss.sonatype.org/content/groups/public/eu/seaclouds-project/.

The consortium has identified Apache Brooklyn as the tool to easily deploy SeaClouds. We
currently support deployments against [Bring Your Own Nodes (BYON)] and to all the IaaS
provider supported by Apache jclouds1.

In the following subsections we show how it is possible to deploy the SeaClouds platform
both on a local computer and on the cloud.

4.4 Local Deployment

The deployment of SeaClouds on a local computer is supported to allow users
experimenting with the platform.

To simplify the creation of the nodes needed to deploy SeaClouds, a convenient Vagrantfile
has been created for the end-users. Make sure you have Vagrant2 and Apache Brooklyn3
installed, then:

cd $HOME
git clone git@github.com:SeaCloudsEU/seaclouds-distribution.git
cd seaclouds-distribution
./setup

Please make sure you have configured BROKLYN_HOME at least in the current terminal.
vagrant up

This spins up a virtual environment, made up of 2 VMs, which are accessible at
`192.168.100.10` and `192.168.100.11`.

Start Apache Brooklyn
nohup $BROOKLYN_HOME/bin/brooklyn launch &

This starts up your instance of Apache Brooklyn on your workstation, accesible at
http://localhost:8081.
Please double-check in nohup.out the correct url.

1 http://jclouds.org
2 https://www.vagrantup.com/
3 https://brooklyn.incubator.apache.org/

https://oss.sonatype.org/content/groups/public/eu/seaclouds-project/
http://localhost:8081/
http://jclouds.org/

23 D3.3 – SeaClouds discovery and adaptation components prototype

Finally, copy and paste SeaClouds blueprint4 to deploy the SeaClouds platform on the 2 VMs
created by Vagrant previously.

4.5 Launching in the clouds

The previous deployment option has to be considered non-production ready: it is a great
way to start with SeaClouds with no effort and get familiar with the main concepts. Of
course, deploy SeaClouds on the cloud is more interesting if an organization wants to
support it in production. By simply editing the location pre-specified on the seaclouds
blueprint, it’d be possible to deploy SeaClouds against any IaaS provider supported by
Apache Jclouds

For example, instead of:

location:
 byon:
 user: vagrant
 privateKeyFile: ~/git/seaclouds/seaclouds-distribution/seaclouds_id_rsa
 hosts:
 - 192.168.100.10
 - 192.168.100.11

one could instead use:

location: jclouds:softlayer:ams01

To provision the 2 hosts on demand on the IBM SoftLayer cloud provider in the datacenter
in Amsterdam.

5. Conclusions

In this deliverable we have described the implementation of the discovery, design and orchestration
functionalities. Such implementation will be continuously updated from now until the end of the
project, following the continuous integration approach we have adopted

4 https://github.com/SeaCloudsEU/seaclouds-distribution/blob/master/seaclouds.yaml

24 D3.3 – SeaClouds discovery and adaptation components prototype

6. References

[1] SeaClouds Project Team, Public Project Deliverable. “ D5.1.2. – Integrated Platform”, available at
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D5.1.2-IntegratedPlatform.pdf, April
2015.

[2] SeaClouds Project Team, Public Project Deliverable. “ D3.2. - Discovery, design and orchestration
functionalities”, available at http://www.seaclouds-project.eu/deliverables/SEACLOUDS-
D3.2%20Discovery_design_and_orchestration_functionalities.pdf, March 2015.

[3] SeaClouds Project Team, Public Project Deliverable. “ D4.6. Prototype and detailed
documentation of the SeaClouds run-time environment components”, to be published, 2015.

[4] CloudHarmony web page https://cloudharmony.com/ (last retrieved July 2015)

[5] Paasify Comparative and Supported Providers. http://www.paasify.it/vendors (last retrieved
July 2015)

[6] SeaClouds Project Team, Public Project Deliverable. “D4.5. - Unified dashboard and revision
of Cloud API”

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D5.1.2-IntegratedPlatform.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D3.2%20Discovery_design_and_orchestration_functionalities.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D3.2%20Discovery_design_and_orchestration_functionalities.pdf

	List of Figures
	Executive Summary
	1. Introduction
	1.1. Scope and outcome of the Deliverable
	1.2. Glossary of Acronyms

	2. Architectural Overview
	3. Discoverer
	3.1. Architecture & Design
	3.
	3.1.
	3.1.1. CloudHarmony component
	3.1.2. PaaSify component
	3.1.3. Manual component
	3.1.4. Cloud advertisement
	3.1.5. Monitoring component

	3.2. Implementation
	3.2.
	3.3.
	3.3.1. Discoverer API

	4. Planner
	4.1. Architecture & Design
	4.2. Implementation
	3.3.2. Web service layer
	3.3.3. Matchmaker
	3.3.4. Optimizer

	4. How to get and install the SeaClouds Integrated Platform
	4.4 Local Deployment
	4.5 Launching in the clouds

	5. Conclusions
	6. References

