

SeaClouds Project

D4.3 Design of the run-time

reconfiguration process

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based

applications
Call identifier FP7-ICT-2012-10
Grant agreement no. Collaborative Project
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP4. WP SeaClouds run-time environment
Deliverable code D4.3
Deliverable Title Design of the run-time reconfiguration process
Nature Report
Dissemination Level Public
Due Date: M16
Submission Date: 16th February 2015
Version: 1.0
Status Final
Author(s): Miguel Barrientos (UMA), Jose Carrasco (UMA), Javier Cubo

(UMA), Elisabetta Di Nitto (POLIMI), Adrián Nieto (UMA), Diego
Pérez (POLIMI), Román Sosa (ATOS), Christian Tismer (NURO),
Andrea Turli (CloudSoft), PengWei Wang (UPI)

Reviewer(s) Javier Cubo (UMA), Antonio Brogi (UPI), Ernesto Pimentel (UMA)

D4.3 Design of the run-time reconfiguration process 2

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 08/01/15 First ToC Jose Carrasco

0.2 12/01/15 Second ToC and deadlines Jose Carrasco, Javier
Cubo

0.3 23/01/15 Third ToC and assignments of tasks Jose Carrasco, Adrián
Nieto, Miguel Barrientos,
Javier Cubo

0.4 29/01/15 First contributions and minor
modifications in the ToC

Jose Carrasco, Adrián
Nieto, Miguel Barrientos,
PengWei Wang, Román
Sosa, Andrea Turli, Javier
Cubo, Diego Pérez,
Elisabetta Di Nitto,
Christian Tismer

0.5 11/02/15 Revision of the first contributions and
second contributions

Jose Carrasco, Javier
Cubo, Adrián Nieto,
Miguel Barrientos,
Román Sosa, Andrea
Turli

0.6 13/02/15 Complete review of a more stable
version

Antonio Brogi, Ernesto
Pimentel

1.0 16/02/15 Stable version after the reviews Jose Carrasco, Javier
Cubo

D4.3 Design of the run-time reconfiguration process 3

Table of Contents

Executive Summary .. 6

 Introduction .. 7 1.

 Structure of the document .. 7 1.1

 Terminology ... 7 1.2

 Glossary of Acronyms .. 8 1.3

 Problem statement, motivation and approach .. 9 2.

 Related work .. 9 2.1

 SeaClouds Reconfiguration approach .. 11 2.2

 SeaClouds Reconfiguration Strategies .. 14 3.

 SeaClouds components involved in the Reconfiguration process 14 3.1

 Main differences between scenarios of Repairing and Replanning 15 3.2

 Triggering and Reconfiguration Request ... 16 3.3

 IaaS and PaaS Challenges in Reconfiguration ... 17 4.

 Repairing Strategy .. 19 5.

 Repairing Scenarios addressed in SeaClouds... 19 5.1

 SeaClouds Repairing Mechanisms ... 22 5.2

 SeaClouds Use Cases .. 24 5.3

 Replanning Strategies ... 31 6.

 Replanning Scenarios addressed in SeaClouds .. 32 6.1

 SeaClouds Replanning Mechanisms .. 36 6.2

6.2.1 Generation of the Replanning Application Model 38

6.2.2 Dependencies Detection and Management... 39

 SeaClouds Uses Cases .. 41 6.3

 Data Migration and Synchronization .. 44 7.

 Conclusions ... 47 8.

References .. 48

D4.3 Design of the run-time reconfiguration process 4

List of Figures

Figure 1. Reconfiguration strategies in the SeaClouds Platform (numbers into circles
represent the order of execution of activities for each strategy). 12

Figure 2. Reconfiguration process in the SeaClouds platform considering the
functionality and connections of the different components. .. 15

Figure 3. Deployment of a Plan (DAM) in SeaClouds. .. 20

Figure 4. Scenario of a violation for repairing. ... 21

Figure 5. Scenario of a repairing action in SeaClouds. ... 21

Figure 6. SeaClouds Repairing strategy overview. ... 23

Figure 7. NURO Cloud game topology overview. ... 24

Figure 8. Examples of Stateless and Stateful modules. .. 33

Figure 9. Replanning on a stateless module. .. 34

Figure 10. User/Alert triggered migration of a stateful module. 36

Figure 11. SeaClouds Replanning strategy overview. .. 37

Figure 12. Application topology of the running example. .. 38

Figure 13. Providers searching that will be used in the migrations. 39

Figure 14. Replanning, triggering effectors on the Deployer component. 40

Figure 15. Hegira4Cloud high level architecture. ... 46

D4.3 Design of the run-time reconfiguration process 5

List of Tables

Table 1 Acronyms. .. 8

Table 2. Increase of requests use case. .. 27

Table 3. Decrease of requests use case. ... 28

Table 4. PHP node failure use case. .. 29

Table 5. DB overload use case. ... 29

Table 6. Follow the user use case. .. 30

Table 7. Reconfiguration Application Plan example. ... 37

Table 8. Migration description which is contained in a RAM. 39

Table 9. Stateless Front-end migration use case. ... 42

Table 10. Stateful Backend migration use case. ... 43

D4.3 Design of the run-time reconfiguration process 6

Executive Summary

In this deliverable, a first design of the run-time reconfiguration process, trying to
preserve the soundness when requirements are violated, is documented. How the
reconfiguration mechanisms will generate reconfiguration recommendations is
detailed here. Thus, the reconfiguration process will suggest to the cloud
functionalities to be replaced by re-establishing the soundness of the deployed
adaption in case violations of QoS properties and Service Level Agreements occur.
Also, the design of the connection with the planning, deployment and monitoring
processes is considered in this document. Finally, the data migration and
synchronisation process as a value-added to SeaClouds is described.

D4.3 Design of the run-time reconfiguration process 7

 Introduction 1.

This document presents the design of the runtime reconfiguration process in
SeaClouds. A reconfiguration process involves several steps, starting from the
definition of the concepts around the process to the strategy or algorithm involved in
the decisions around the process.

In SeaClouds, a reconfiguration starts when, once the application has been deployed
according a plan, the Monitor component detects a violation on a requirement or an
user-defined SLA rule and the user confirms the need of a reconfiguration of the
application at runtime, also considering other actions which could fix the problem
without the need of generating a new plan. Although usually the reconfiguration
process will need a user confirmation, the system could be preconfigured to
autonomously decide a replanning under some circumstances.

 Structure of the document 1.1

After giving the definition of the core concepts of a reconfiguration process in Section
1.2, where we define what a Reconfiguration, both Repair (or Self-healing) and
Replanning strategies means, Section 2 presents the problem statement and
motivations why and how the SeaClouds platform is tackling reconfiguration, also
comparing previous ideas related to cloud reconfiguration.

In Section 3, we describe more in detail the differences between the reconfiguration
strategies considered, as well as the explanation of when the reconfiguration is
triggered. In Section 4, the challenges and differences of the reconfiguration at IaaS
and PaaS level are given. This covers to deal with VM, servers, network, or storage at
IaaS level and with operating system, programming language execution environment,
database, or web server at PaaS level.

Section 5 and 6 detail the Repairing and Replanning strategies, more in deep,
respectively. For both cases, we first explain when the specific strategy is performed
exemplifying this with addressed scenarios, and how SeaClouds proposes to
implement the strategy using also the concrete NURO Cloud Gaming case study in
which SeaClouds’ consortium is working (use cases of the Social Networking case study
could be also adopted in a similar way, and it will be done in the next steps for the real
adoption, although for simplification reasons, in this document we have decided to
illustrate the strategies by using only one of the case studies).

In Section 7, we introduce a first attempt to address the specific problems with the
reconfiguration of information, storage or databases of cloud applications. Finally,
Section 6 presents some conclusions for this document.

 Terminology 1.2

In this section, we list the main concepts we will use in the reconfiguration process in
SeaClouds.

D4.3 Design of the run-time reconfiguration process 8

Reconfiguration: Reconfiguration allows to manage issues in an application
deployment in a reactive way. Reconfiguration process detects when application
requirements are violated and it tries to fix it using different mechanisms depending
on the kind of violation. Each issue could be accomplished using a concrete
management methodology in order to ensure the expected application behaviour. In
SeaClouds, we consider two different reconfiguration strategies: repairing and
replanning.

Repairing: This reconfiguration strategy tries to solve an incident of the application
status (like a failure in some modules). In this case, SeaClouds detects the cause of the
malfunctioning and then it tries to reach a stable and expected application status using
the operations supplied by deployment resources, mainly stop/start/rescale resources.
In the SeaClouds context, we consider the technique of self-healing is a synonym for
repairing.

Replanning: In this reconfiguration strategy, SeaClouds detects that the current
deployment status does not work as it was expected, and a repair action cannot
resolve the situation, so a replan is needed. Then, SeaClouds finds the resources or
application modules that exhibit a bug or fail in its performance and tries to fix the
detected issues redeploying (moving or replanning) the resources or modules over
different cloud providers, in order to take advantage of the features offered by those
new providers. This entails a cost that has to be considered in the SeaClouds
replanning strategy.

 Glossary of Acronyms 1.3

Here we list the different acronyms which will be used in this document.

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

DaaS Database-as-a-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

GUI Graphical User Interface

API Application Programming Interface

APP Application

DB Database

DAM Deployable Application Model

RAM Reconfiguration Application Model

VM Virtual Machine

HA High Availability

Table 1 Acronyms.

D4.3 Design of the run-time reconfiguration process 9

 Problem statement, motivation and approach 2.

Since its very foundation, cloud computing is a representative of the concepts of
dynamism, changes and adaptations. Its proclaimed resource elasticity and on-demand
resource acquisition and release are good examples of such dynamism.

Calling configuration to a snapshot of the resources allocated to an application at a
given moment, a reconfiguration is what happens when changing between two
configurations. Reconfigurations take place when the application is not executing as
expected the current configuration, or when there are devised configurations more
suitable than the current one (e.g., in terms of cost of cloud resources).

The reconfiguration process is applied over the system in execution providing
mechanisms for rescheduling and re-execution of the modules, with the purpose of
foreseeing the compliance of the properties and the soundness of the orchestration
among the application modules and their connections.

Thus, SeaClouds will offer different reconfiguration alternatives to be selected by the
application provider in an interactive way, allowing the deployment of the modules
over the different clouds according the distribution plan generated in the Planning
phase. In this line, the monitoring service we propose uses provider-independent
metrics (defined by SeaClouds) to provide the status of the application as well as of the
single services composing it. This monitoring process, in connection with the planning
and deployment processes, can detect the need of load-balancing or distribution of
Cloud services on several Cloud providers, and interact with the reconfiguration
module in order to determine when it is required to perform an evolution or migration
of the services. As a consequence of monitoring, dynamic reconfiguration can be used
to evolve the orchestration by considering all the changes required (without
suspending the execution of services not affected by those changes). Evolution may
imply updating a service, dynamically replacing erroneous services or migrating it to a
different Cloud provider to leverage its advantages or avoid the shortcomings of
another Cloud provider.

In the following sections, we first present related works doing efforts in cloud
reconfiguration, and then, we presents how SeaClouds tries to solve this problem.

 Related work 2.1

The ideas around the reconfiguration of the application modules in cloud computing
are not something new, so previous works have proposed some ideas.

An important issue is as regards the cost of reconfiguring. Thus, in [1, 2] the authors
describe a hierarchy to group the different kinds of reconfiguration that could be done
in a cloud application, addressing these issues from the point of view of cost-aware.

An analysis of the different reconfiguration strategies in [3] motivates a guideline to
develop cloud applications using a set of techniques which allows to avoid the main
Cloud Computing issues, like as vendor lock-in [4, 5]. Moreover, this paper proposes a

D4.3 Design of the run-time reconfiguration process 10

new classification to achieve the aforementioned kind of reconfigurations. However
they do not take into account the possibility of performing a cross-provider migration
neither the option to move only one application module instead of the whole
application, which is a major focus on SeaClouds.

In many works, authors refer to the possible reconfiguration strategies as dynamic
scaling (up/down scale), replication and migration (online or offline), in accordance
with the reconfiguration strategies analyzed and proposed by SeaClouds (for example,
local resizing is one of the repairing examples studied in Section 5.3). As we will
describe along this document, several techniques are used to reach these goals in
SeaClouds.

In [6] the authors define a methodology to ensure an efficient autoscaling in a Cloud
system, using predictive models for workload forecasting. It provides a set of key
parameters to establish the system’s behavior focusing on linear equations for the
quantification of the constraint violations and the cost of the reconfiguration
operations necessary to fix the system status for scaling a system. Like the previous
work, [7] proposes to improve the efficiency of the system through the analytical
performance (based on a queueing network system model) and using workload
information to predict the application behavior and optimize the virtual machines
provisioning to the application requirements.

For ensuring an efficient distribution over potentials cloud providers, Schroeter et al
propose in [8] a system based on applications and cloud models using an extended
feature of EFM [9, 10]. Using SaaS applications, the users are able to compose their
own multi-tenant system to provide a managed service. The provisioning of this
system composition could be reconfigure dynamically in order to scale and modify the
used resources.

A different technique is used by Haibo et al [11] using a genetic algorithm to carry out
the autoscaling in a cloud system. In this case, it focuses on reaching an efficient
energy consume in the provider’s data centers.

Compared to these approaches, as aforementioned, a key goal of SeaClouds is to allow
the migration of application modules between different clouds providers.

In [12] the authors describe mechanisms to allow the dynamics reconfiguration in
distributed software system, which also could be considered cloud. This work provides
a way to find a first efficient provisioning of a system over a set of resources and
services based on key features as cost or time. A proposed component, called Planner,
is in charge of composing a provisioning plan to distribute the application over the
expected providers. Moreover, it proposes monitoring techniques to monitor the
application to know the current status and behavior of a deployed application and the
computing resources. Then, depending on the collected data it determines if a
reconfiguration is necessary, for example, migration, scaling, etc. Again, the Planner
composes any reconfiguration plans to fix the issues of the deployed application. This
work, applied mainly to distributed systems, is in the same line that SeaClouds,

D4.3 Design of the run-time reconfiguration process 11

although in SeaClouds we go beyond with the idea of considering multi-cloud
deployment and migration of individual modules of the application.

Leyman et al describe in [13] a distribution process based on top-down and bottom-up
analysis techniques for finding the best application provisioning. A predictive model of
the workload based on statistical distributions and the real system behaviour allow to
predict the performance of the application when it is deployed over a cloud provider.
These techniques are integrated in a distribution and reconfiguration proposed
process, which describes the necessary steps to carry out the distribution and pos-
deployment management, including the migration, of an application. Even though
unlike the work above, this is focused on the cloud environments, but it does not
devote as many resources for describing the accomplishment the reconfiguration
process.

In summary, although the aforementioned works provide several ideas or solutions,
our proposal in SeaClouds considers all the proposed concepts and unify them inside a
multi-cloud environment where a single application module can be reconfigured with
independence whether the goal is to perform a reconfiguration inside the same
provider or not. Also we go in two directions as regards the strategies, such as it will be
explained below.

 SeaClouds Reconfiguration approach 2.2

In the SeaClouds reconfiguration approach, we can distinguish two different triggers
for a reconfiguration process: human-triggered reconfigurations and automatic
reconfigurations. In human-triggered reconfigurations, a user could define a new plan
and order its execution to the Deployer. To avoid both human errors and requiring
continuous attention of application’s owner, reconfigurations can be also triggered
automatically.

Figure 1 depicts the reconfiguration strategies considered in the SeaClouds platform,
where we represent the options of reconfiguring with the decision of the user (Human)
of in an automatic way (Automatic - Monitor) based on monitoring mechanisms to
determine when it is required, interaction with the Planner and the Deployer
components.

D4.3 Design of the run-time reconfiguration process 12

Figure 1. Reconfiguration strategies in the SeaClouds Platform (numbers into circles represent
the order of execution of activities for each strategy).

For an automatic reconfiguration, it is needed first to compute how to reconfigure (i.e.,
to define the reconfiguration process using the available reconfigurations actions, as
indicated in the steps in the figure, such as: migrate components, deploy/undeploy
components, start/stop components, replicate components, delete component replica,
change the maximum number of replicas for a component, etc.), and later apply these
reconfiguration actions (see steps in the figure).

Among the automatic reconfiguration processes, we can distinguish again between
two types, foreseeable ones that are expected to be executed often and where the
state of the environment can be predicted beforehand, and unpredictable or unusual
ones where the environment features cannot be predicted reliably.

SeaClouds Planner has the capability to define new reconfiguration processes even if
they have never been considered before in the cloud environment, for example, the
unreachability of a complete cloud provider. This capability allows to solve some
problems that may happen during the application runtime but cannot be predicted the
first time that the application is deployed. This capability is implemented by the
reconfiguration strategy called replanning. For doing this replanning, it requires global
information as a snapshot of the state of the environment. This information of the
current situation comes from the Monitor, SLA service, Discoverer and Deployer.

Notwithstanding the value of a module that can decide for suitable configurations
even under situations that had never seen before, the replanning activity takes time
and cost efforts, since it has to deliberate the suitability of a new Deployable

D4.3 Design of the run-time reconfiguration process 13

Application Model (DAM) among a large set of possible alternatives, and consider the
cost of replanning. Therefore, the time and cost required for its computation are not
negligible. This is inconvenient for applications that should reconfigure often because
the application spends too much time being deployed in non-suitable configurations.

To improve this situation, SeaClouds implements a complementary reconfiguration
strategy called repairing. In this case, the Monitor will trigger the available effectors
(Deployer effectors) to solve the ongoing problem as soon as some violation situations
occur (e.g., when some characteristics are perceived, or when arrives a clock-based
event for applying the ”follow-the-sun” policy).

On the one hand, repairing strategy allows the application to reduce its amount of
time in wrong configurations because it skips the deliberation activity that defines the
reconfiguration; so it is suitable for often execution at runtime. Moreover, the
existence of repairing strategy releases the Planner from computing several times the
same reconfiguration definition, by reducing the cost of replanning. On the other
hand, repairing strategy is effective to execute reconfigurations for a-priori on user on-
demand situations.

It is worth noting that, in the example previously mentioned, regarding the
unreachability of a cloud provider, although it could be predictable event, it would be
required to also predict the state of the rest of the cloud providers in order to
anticipate the reconfiguration definition.

D4.3 Design of the run-time reconfiguration process 14

 SeaClouds Reconfiguration Strategies 3.

In this section, we describe the concepts around the application reconfiguration
strategies in order to clarify how the SeaClouds Platform should manage a
reconfiguration process.

 SeaClouds components involved in the Reconfiguration process 3.1

Monitoring and managing applications is an arduous task. An application management
solution should consider multiple runtime metrics to understand effectively and
possibly efficiently the status of the application in order to manage it correctly.

In SeaClouds, “the source of truth” is the Deployable Application Model (DAM), the
concrete plan that is executed by the Deployer Engine. The Deployer Engine, in fact,
executes DAM concrete plans produced by the planning stage. In the planning stage,
SeaClouds assembles a plan that contains the modules of the application and the
topology, the concrete services that execute the modules, and the policies to fulfill
user requirements, like SLA or cost-constraints. Just to give a very basic example, a
SeaClouds’ user can ask to deploy a 3-tier web application in EU ensuring that its
response time will always be less than 300 ms but without spending more than x
euros/month. This (simple) example shows the complexity of managing applications:
those are reasonable constraints, but the SeaClouds platform will have to translate
these high-level constraints into a DAM concrete plan that the platform can run and
manage.

As we can see in Figure 2, after an alert is triggered we differentiate two
reconfiguration types. Repairing occurs when the violation can be fixed without the
need of generating a new plan, because it was previously considered by the user or
even it is dynamically order by the user. In this strategy, the Monitor is directly
connected to the Deployer to check the actions which the Deployer could fix. However,
if the situation cannot be fixed or it was tried to fix it but the action failed, then a
Replanning is performed, calling the Planner.

D4.3 Design of the run-time reconfiguration process 15

Figure 2. Reconfiguration process in the SeaClouds platform considering the functionality and
connections of the different components.

 Main differences between scenarios of Repairing and Replanning 3.2

The aim of reconfiguration process is to fix the requirement violations after the
application has been deployed by SeaClouds Deployer. Depending on different kinds of
violations, repairing and replanning are two different reconfiguration strategies in our
SeaClouds platform.

As described in the previous sections, the repairing reconfiguration is based on the
management of deployment resource, which allows SeaClouds to adjust the deployed
application according to the runtime information and related monitoring rules

D4.3 Design of the run-time reconfiguration process 16

(previously defined by the user, or even requested at runtime), using the Deployer
Engine effectors. Then, it involves dynamic changes or fixed fails of some components
or the entire application. The applicable scenarios mainly include replacing/restarting a
failed component, scaling to meet the demand, and applying a follow-the-sun policy.
By contrast, the replanning reconfiguration will try to handle the cases that cannot be
solved by repairing. It needs to modify the plan specified in the DAM, that describes
the distribution of the application modules, and do a redeploying. Thus, replanning
cannot be completed independently by only the Deployer Engine, but also needs the
work of planner to update the DAM which may contain new distribution of the
application modules. Replanning reconfiguration will be more complicated than the
repairing, since migration may happen in this process.

In conclusion, repairing and replanning are two different reconfiguration strategies
that try to handle different reconfiguration scenarios. Repairing can be implemented
automatically considering the Monitor and Deployer (Engine), while replanning
involves a more complex process (not only considering some failures, but also
triggered by some QoB violations) and needs to involve also the Planner to generate a
new plan.

 Triggering and Reconfiguration Request 3.3

As depicted in Figure 2, the necessary alerts to perform a reconfiguration are triggered
by two components: the Monitor and the SLA Service components.

On the one hand, the Monitor component is responsible for the control and
enforcement of Quality of Services (QoS) properties, as well as forwarding violations of
these properties to the interested subscribed modules.

Each time a violation is detected by the Monitor, it analyzes if SeaClouds can fix the
situation. If so, the Deployer Engine performs a repairing reconfiguration through the
Deployer effectors. If not, a replanning trigger is sent to the Planner component,
where a replanning reconfiguration is performed.

The point is that the Monitor component works at real-time, having a close look at the
performance of the application, and reacting immediately.

On the other hand, the SLA Service component is listening for violations that impact on
the business of the application, performing a long term analysis. i.e., Quality of
Business (QoB). If a QoB policy states that a migration should occur if violated, then
the SLA component triggers a replannification alert to the planner.

D4.3 Design of the run-time reconfiguration process 17

 IaaS and PaaS Challenges in Reconfiguration 4.

This sections describes the challenges of the reconfiguration process at both levels,
IaaS and PaaS, in a general way and how SeaClouds is proposing to do it.

Reconfiguration at PaaS Level is the continuous process of "managing" the life of a
business application where its modules have been distributed over multiple PaaS
providers. In this context "managing" means the automatic or semi-automatic
capability to react to the change of the environment in term of QoS and QoB. Some
aspects should be considered at PaaS level reconfiguration are the operating system,
programming language, execution environment, database, or web server.

On one hand, when a QoS or QoB violation occurs, SeaClouds should be able to move
part of the business application to another cloud offering and automatically
reconfigure the entire system (business application and cloud services) to ensure the
correct behavior of the application and its modules.

On the other hand, the reconfiguration at PaaS level might also happen for the
involvement of the Application Operator. Actually, the SeaClouds multi-cloud
governance and re-configuration facilities give application “developers & operators”
the visibility and the necessary control across private and public PaaS clouds to have all
the time the business application under control. The ability to check the status and
performance of the application and even compare it to other applications in an
abstract way can provide a great benefit to developers & operators by providing data
that can be used to take manual decisions (with the help of the SeaClouds GUI) such as
the scaling or migration actions of the business application.

Also reconfiguration at IaaS level should be tackled. We have identified two types of
reconfiguration: repairing and replanning. As regards the replanning, our approach will
consider two types: replanning of stateless modules, and replanning of stateful
modules (see Section 6.2). Based on our previous experience on IaaS and PaaS
providers [14, 15, 16, 17], we can mention the following circumstances as challenges
to be addressed by SeaClouds:

 Stateful modules, as explained in Section 6.2,

 PaaS reconfiguration limited by operations provided by PaaS providers,

 Handle IaaS and PaaS reconfigurations in a uniform way, without imposing a
certain configuration scheme to the application.

Regarding the migration of stateful modules, the migration of state might be
dependent on the type of module and even of the state itself. This leads to a situation
where an ad-hoc procedure has to be written in order to perform the migration.

This is even worse in the case of PaaS providers, where the needed primary operations
to restore the module status in the new provider may not be available. For example, to
migrate a database to Pivotal CloudFoundry, where the provider does not supply a

D4.3 Design of the run-time reconfiguration process 18

load-database operation, and delegates that action on external providers, such as
Flyway [18].

Another aspect related with PaaS providers affects the repairing reconfiguration,
where the lack of some scaling operations limits the efficiency of the reconfiguration.

Returning to the database example, PaaS providers have different mechanisms to
create services and inject the needed credentials to dependant modules. This is a
problem in an initial deployment, and of course, in a redeployment or migration. For
example, CloudFoundry assigns an environment variable VCAP_SERVICES [19] to each
module where all credentials for binded services are stored in JSON format, while
OpenShift stores the credentials in several environment variables [20]. Other providers
provide the service's credentials to the user on creation time, so they must be
configured in the application by the user or by the deployer. This mechanism is the
usual case in IaaS deployments.

These challenges exposed are hard to overcome, so the SeaClouds’ consortium will
need to set a list of priorities and solving appropriately some of them, avoiding the
situation where SeaClouds solves all of them, but in a wrong way.

D4.3 Design of the run-time reconfiguration process 19

 Repairing Strategy 5.

In this section, the repairing strategy is described more in detail. To do this, next, a
general introduction is given. Then, the supported repairing scenarios in SeaClouds are
described, and the mechanisms SeaClouds uses to solve these scenarios are also
presented. Finally, the NURO Cloud Gaming case study is used to illustrate some use
cases which could be solved by using the SeaClouds repairing mechanisms.

Today’s increasingly complex systems, composed of a variety of components,
operating in large-scale distributed heterogeneous environments, require more and
more skills to install, configure, tune, and maintain. Determining the root cause of
software runtime failures in such complex systems can be problematic and an
automated support is clearly beneficial. Ideally, such complex systems would be able
to recognize and solve a large portion of these errors on their own.

To this purpose, these systems would need to know when and where an error state
occurs, to have adequate knowledge to stabilize themselves, to be able to analyze the
problem situation, to make repairing plans, to suggest various solutions to the system
administrator and/or to heal themselves without human intervention.

Autonomic computing has been proposed as a way to reduce the cost and complexity
of systems, to control their manageability and to achieve the above desired situation.

Self-management is central to autonomic computing and addresses four tasks: self-
configuring, self-healing or repairing, self-optimizing, and self-protecting. Next, we
present the scenarios related to repairing

 Repairing Scenarios addressed in SeaClouds 5.1

This section describes the repairing scenarios covered currently by SeaClouds using its
Monitor and Deployer Engine.

The ultimate goal of a repairing system is to equip current distributed applications with
strategies with which they can determine by themselves the root cause of their
software runtime failures and make plans or suggestions for repairing these failures.
To reach this goal, the following design criteria are considered:

 No application source code is required.

 Performance overhead should be acceptable.

 For those failures that cannot be healed, the cause should be diagnosed.

 All repairing actions should be reported to system administrators.

Then, sensors can be instrumented at the strategic positions in the application to
report different information, like application failures or application content, that are
instrumented in all strategic components (objects) of the application. Thus, it allows to
provide the knowledge about the application behavior as we can describe above.

D4.3 Design of the run-time reconfiguration process 20

In this context, repairing is not only a property of an autonomic system, but it is also
one of the reconfiguration strategies supported by the SeaClouds platform. Repairing
tries to restore the status of an application without asking for a replan. In fact, during
the planning stage, SeaClouds platform prepares a DAM which contains the topology
of the application that is going to be deployed, and also a set of rules or policies are
specified containing strategies to respond to runtime failures. Therefore, the inputs to
the Planner are the result of a combination of inputs (user-requirements environment
constraints) that will be translated into a pre-defined set of actions that can be used to
mitigate runtime troubles. This peculiar SeaClouds feature is described into details in
the following.

As depicted in Figure 3, after deploying a DAM, and during all the lifecycle of the
application, SeaClouds monitors the status of crucial sensors of the application itself
and it is able to react to particular situations using the pre-defined actions which
already are defined by the user.

Figure 3. Deployment of a Plan (DAM) in SeaClouds.

In the scenario depicted in Figure 4, SeaClouds detects an underperforming
application, according to predefined constraints and SLAs: “response time to long”.

D4.3 Design of the run-time reconfiguration process 21

Figure 4. Scenario of a violation for repairing.

Then, SeaClouds Monitor looks among the monitoring rules available and applies the
sensible one, in order to stabilize the application behavior. This is accomplished using
the operations offered by each resource of the application. Specifically, how illustrated
in Figure 5, the Deployer deploys an additional instance into the Cloud 1, performing a
repairing action.

Figure 5. Scenario of a repairing action in SeaClouds.

SeaClouds implements several repairing strategies (based on the ones in [21]) to adapt
to the workload and reduce the associated cost to the applications, where some of
them are callable by the user or must have been planned by the user at design time:

 High availability (HA)

o ServiceReplacer: it can be attached to a DynamicCluster and replaces a
failed member in response a configurable sensor; if this fails, it sets the

D4.3 Design of the run-time reconfiguration process 22

Cluster state to on-fire, which is the state that indicates a problem (e.g., a
Database).

o ServiceRestarter: it is attached to a SoftwareProcess and invokes restart on
failure; if there is a subsequent failure within a configurable time interval,
or if the restart fails, this gives up and emits an entity restart failure signal
(e.g., a PHP module).

 Autoscaling

o AutoScalerPolicy: it is attached to a Resizable entity and dynamically adjusts
its size in response to specific emitted events. Alternatively, the policy can
be configured to keep a given metric within a required range (e.g., a
Database).

 Loadbalancing

o LoadBalancingPolicy: it can be attached to a pool of containers that can
host one or more migratable items. The policy monitors the workrates of
the items and effects migrations in an attempt to ensure that the
containers are all sufficiently utilized without any of them being
overloaded. In addition to balancing items among the available containers,
this policy causes the pool Entity to emit events when it is determined that
there is a surplus or shortfall of container resource in the pool respectively.
These events may be consumed by a separate policy that is capable of
resizing the container pool (e.g., a PHP).

 Follow-the-* (a scheduled task)

o Follow the Sun (Moon/Wind/Kilowat) (Inter-Geography Latency
Optimization): Policy for moving work around to follow the demand; the
work can be any Movable entity, where a Movable entity represents an
item that can be migrated between balanceable containers (e.g., region
information sensor, or proxy).

 SeaClouds Repairing Mechanisms 5.2

In SeaClouds, the Deployer Engine is an application management system, so it is in
charge of two crucial tasks: deploy the plan which can consist of multiple components
that need to be configured and integrated across multiple machines, and interacts with
the Monitor to monitoring key application metrics; scale to meet demand; and restart
and/or replace failed components. We refer this second task as `repairing`.

The Deployer Engine is allowed to modify the deployed application whenever it is
required by following the user or the Monitor orders. According to the runtime inputs
and the policies defined at the level of the entire application and/or components,
Deployer Engine owns a number of tools to adjust the application using the

D4.3 Design of the run-time reconfiguration process 23

instructions (rules or policies). For example, the Deployer Engine can add more
resources to a deployed application to meet the growing demand.

Figure 6. SeaClouds Repairing strategy overview.

Using the previous example of the 3-tier web application and its constraints, a
potential DAM may look like the following:

 MyApplication

o MySqlNode

o ControlledDynamicWebAppCluster

 DynamicWebAppCluster Cluster of JBoss7 Servers

 NginxController

The app server cluster has an AutoScalerPolicy. The AutoScalerPolicy can be configured
to respond to the sensor reporting requests per second per node, invoking the default
resize effector, which is the actions accepted by the app server cluster to scale
up/down the number of app server instances.

When the requests per node per second will be above the threshold desired by the
user (300 requests per second), the Deployer Engine will scale up the number of app
servers inside the webApp cluster to automatically scales the cluster up or down to be
the right size for the cluster’s current load.

https://drive.draw.io/

D4.3 Design of the run-time reconfiguration process 24

This illustrates a repairing strategy, because the AutoScalerPolicy is inside the original
DAM. Thus, through repairing, the SeaClouds deployer could modify automatically the
deployed application and related configuration according to the runtime information
and related policies defined in the DAM generated by the SeaClouds planner, so as to
meet the dynamic demand of the application during runtime, without replanning or
migration.

In the next section we will describe how this process happens with a real use case.

 SeaClouds Use Cases 5.3

In this section, we will illustrate the repairing strategy performed by the SeaClouds
platform using one of the SeaClouds case study, the NURO Cloud Gaming Case Study,
whose architecture is presented in Figure 7.

Figure 7. NURO Cloud game topology overview.

Below, we describe in more detail the different components which compose the
aforementioned use case.

Game client/testing module

Game clients from all over the world connect to server application to perform game
actions and synchronize the game data. In real life typical “follow-the-sun” behavior
can be spotted.

NURO company develops cross platform clients with focus on mobile devices. For this
case study the game client is out of focus and will be simulated to the server by scripts.
The script based testing module for boom scenarios could be also deployed to cloud
resources.

Front end: Proxy/Loadbalancer

This represents the front end. It handles the connection between the client and the
PHP layer. It can be a separated cloud module or represented by apache. The front end
should be in the region where the pile of players reside. This improves the
performance by minimizing network latency and furthermore handle optimized

https://drive.draw.io/#G0BxP_HXE8tVoFRURrU24yOEc0QVE

D4.3 Design of the run-time reconfiguration process 25

connections (keep alive, encryption, etc.) between the client and the server
application.

It makes simple to combine a mix of cloud resources on the PHP layer. For example,
having a cheap private PHP node for normal/idle situation and adding easily additional
expensive nodes from cloud providers in peak or boom situations. It is also helpful for
reconfiguration and scaling the PHP module. It can be used to validate the follow the
sun strategy of sea clouds and any reconfiguration of the PHP layer.

Webservice: PHP

Main part of the application logic is realized with this module. It processes the client
requests, it gets and stores the game data within the database. Depending of costs and
database load there is a maximum limit of PHP workers. The PHP module is the perfect
candidate for a “load balancer” and “high availability by restart” strategies of sea
clouds.

Database: MySQL

This module stores the game data and some parts of the game logic are executed by
sql statements. For example data depending mass updates. Database is the perfect
candidate for “autoscaling policies” and “high availability by replacement” strategies of
sea clouds.

The NURO Cloud Gaming application can be highly simplified as a 3-tier web
application, where a number of OSS products are used to compose the final
application. The main components are, in fact, the following:

 MySql database, to store the business data.

 PHP runtime to execute the business logic.

 Apache HTTP server, that represents the web front-end where authentication
and load-balancing happen.

This apparently simple classic application contains a lot of challenges when an
autonomic application management tool needs to look after it. How can the
management tool enable zero down-time? How does the application elastically react
to external inputs due to gamers that potentially come from different timezones?

Those questions are effectively complex requirements that can be modelled in
SeaClouds, passing them to the Planner which will generate a DAM that not only
contains the topology and the locations for the deployment of the application, but also
a set of policies that are runtime tools.

Using SeaClouds platform, NURO administrators can have out-of-the-box
ServiceRestarter policy enabled for all the SoftwareProcess that compose their
application, db and loadbalancing. This is a basic but powerful repairing strategy,
especially in business critical production applications.

D4.3 Design of the run-time reconfiguration process 26

NURO devops team could easily set a request/second threshold on the PHP module
throughput: if the application is underperforming, the AutoScaler policy will trigger the
creation of a new instance of PHP node that will be automatically attached to the
Apache HTTP loadbalanced proxy. Of course, if the load on the application would be
low, SeaClouds will be able to shrink the cluster of instances, to have a cost-effective
usage of the clouds.

In order to answer all of these questions, we describe each scenarios with the
following structure:

 Unique ID: a unique id for the use case which will be used to point to the use
case.

 Use Case Name: a name for the use case.

 Description: a brief description for detailing the use case.

 Solution: the goal of the use case, by describing the final desired status that has
to be reached.

 Issues: a more detailed description that show the concrets incidents or issues
which motivate the use case.

 Triggering: this point concerns the agent which triggers the reconfiguration
event. It could be a user or a system’s component, (e.g., the Monitor).

 Actions: the necessary reconfiguration operations.

 Exception: it describes the procedure when the target behavior is not
expected.

As mentioned in Section 5.3, for each use case we describe Unique ID, Use Case Name,
Description, Solution, Issues, Triggering, Actions and Exceptions.

Increase of players

If there is a rise of players, more PHP resources are needed to handle the requests. In
this case the application is not performing with the required SLA. Then, SeaClouds
starts the repairing process to scale up the number of web server instances and attach
them to the loadbalancer (Table 2).

Field Description

Unique ID RequestsIncrease

D4.3 Design of the run-time reconfiguration process 27

Use Case Name Increase of requests

Description The sensor detects a violation on the application contains that
affects to the Front-end (PHP modules are overcapacity).

Solution Autoscaling policy.

Issues This is an early warning indicator
- The Front-end performance could be affected due to

the increment of the users’ number.
- The Front-end provisioning should be managed to

address the maintenance of the application’s
performance.

Triggering request_analytics.minute.requests_delta > n

Actions Scale up to the limit
- Scale PHP up
- Scale MySQL up

Exceptions Cost maximum is reached => inform administrator.

Table 2. Increase of requests use case.

Decrease of players

If there is a decrease of players, less PHP resources are needed to handle the requests.
In this case the application is over performing with the required SLA. Then, SeaClouds
starts the repairing process to scale down the number of web server instances and
detach those from the loadbalancer (Table 3).

Field Description

Unique ID RequestsDecrease

Use Case Name Decrease of requests

Description The sensor detects a violation on the application contains that
affects to the Front-end (too many PHP modules are deployed)

D4.3 Design of the run-time reconfiguration process 28

Solution Autoscaling policy

Issues - The number of the users has decreased, and too
resourcer are used according to the current application
runtime requirements.

- It could be necessary to adapt the deployment context
to ensure an efficient used of the cloud resourcer.

Triggering request_analytics.minute.requests_delta < n

Actions Scale down to the limit
- PHP

Exceptions Minimum is reached => inform administrator

Table 3. Decrease of requests use case.

PHP node restart

If PHP node does not answer, a restart of the node could help (Table 4).

Field Description

Unique ID PHPNodeFailure

Use Case Name PHP node failure

Description A PHP node does not respond, a node restart could help.

Solution ServiceRestarter policy

Issues Maybe the node has crashed or has been hacked.

Triggering HTTP too long timeout

Actions Restart node

Exceptions Node is not responding => inform administrator and restart

D4.3 Design of the run-time reconfiguration process 29

Table 4. PHP node failure use case.

Database overload

There are not enough resources to handle an increasing load on one of the database
nodes. The node needs to be vertically scaled (Table 5).

Field Description

Unique ID DBOverload

Use Case Name DB overload

Description A node of the clustered DB is overloaded, increase the
resources available to this node (vertical scaling).

Solution AutoScaler policy

Issues --

Triggering Query response time too long.

Actions Scale DB node up to the limit.

Exceptions limit reached => inform administrator and restart

Table 5. DB overload use case.

Follow the user

The application receives gamer request from different geographical zones. A geo
loadbalancer redirects the traffic to the application replica closer to the user, in order
to minimize the latency and the resource dispersion in the cloud distribution (Table 6).

Field Description

Unique ID FollowTheUser

D4.3 Design of the run-time reconfiguration process 30

Use Case Name Follow the user

Description A user request to the application is redirected to the closer
application cluster available

Solution Follow-the-sun policy

Issues --

Triggering AutoScaler policy of each application cluster or db cluster
insider the different geographical zone covered.

Actions Add a node to the cluster/s in different regions

Exceptions N/A

Table 6. Follow the user use case.

D4.3 Design of the run-time reconfiguration process 31

 Replanning Strategies 6.

In this section, we describe the replanning strategies in a general way, as well as the
scenarios SeaClouds can tackle and the mechanisms used to do it. Also, we present
some use cases related to the mechanisms as regards the Cloud Gaming case study.

As described in previous sections, when an application is deployed by the Deployer
component, the Deployer Engine follows the application distribution that is described
in the DAM. In this plan, the cloud services and resources were chosen by the Planner
according to the application topology and requirements.

Although it is clear that the Planner selects providers whose features are the best for
deploying the application, once the application is running in a (multi-)cloud
environment, its behavior may not be as expected. Previously, we have described the
repairing reconfiguration methodology which tries to deal with a lot of the issues of
the application runtime. It is based on the management of the deployment resources
to accomplish the expected performance according to the application requirement.
However, several scenarios can be found where such kind of reconfiguration is not
able to address the challenge of fixing the malfunctioning application and it becomes
necessary to modify the distribution of the application modules. In other words, it
modifies the plan that described the application module’s distribution over the
selected cloud providers, ie, replanning. The goal of this task is to provide the
application of a deployment context whose features are enough to fulfil the user
application requirements.

Thus, it is necessary to analyze the profile of the other cloud providers and select the
best alternatives again. Once the new cloud resources have been selected, the next
step is the generation of the reconfiguration plan describing a replanning model of
how the reconfiguration process will be carried out. The aforementioned plan is
composed by a sequence of the operations which enable detailing the management of
each application module and each cloud resource in order to integrate the replanning
changes in the current application deployment. For example, these operations could
be e.g., stopping a VM, creating a new VM in a new cloud provider, redeploying an
application module, connect two applications components, etc migrate an application
module to a new cloud provider; instructions/operations that, as we have mentioned,
permit existing resources to be managed and others to be created using new cloud
providers.

In order to ensure the correct reconfiguration plan generation, it is necessary to know
the deployment status, e.g., where each application module is deployed. The modules
and the cloud resources are configured, in order to provide an updated reconfiguration
management of both application modules and applications resources. Therefore, as we
have mentioned in others documents [22] the topology is an immutable element over
the application’s lifecycle, so a replanning process should not modify it. The knowledge
about the deployment status will be very useful to maintain the dependencies
between the application modules during the replanning without affecting the
application topology.

D4.3 Design of the run-time reconfiguration process 32

It is also necessary to ensure that the application will not be led to a wrong state by
the reconfiguration process. During a replanning, any application module could be
stopped or even deleted, which may affect the expected behavior of the other
application modules. So, it is very important the reconfiguration plan or replanning
model manages all application modules, thereby ensuring the stability of the system.
For example, if a database is going to be managed, the application modules that use it
must be stopped to avoid data integrity issues.

In relation to what has been stated above, during the replanning process it is necessary
to maintain the functional connection with the deployment according to the topology,
e.g. between a database and an application module. Thus, if the replanning has
affected any module, the reestablishment of their dependencies and connections will
be detailed in the reconfiguration plan. For example, if a database has been
redeployed on a new provider (reconfigured), the modules that use this database
should be reconnected to ensure the performance of the application.

Follow these guidelines will be useful to build a reconfiguration plan which allows (i)
re-adapting the deployment configuration to the defined requirements, and (ii)
keeping the expected application behavior without altering either the topology or
dependencies. Once the reconfiguration plan has been composed, the operations, that
it contains, will be executed to reconfigure the application deployment.

Of course, there are many kinds of use cases that can be applied to the re-planning
process. However, as we have already mentioned, we have chosen the examples that
best represent the more common scenarios addressed by SeaClouds.

 Replanning Scenarios addressed in SeaClouds 6.1

In this section, we address two different scenarios where an unexpected behavior of
the cloud resources used to deploy and application modules are found. This not
desired performance would take due to SLA violation (QoB) or if the user decides that
an application module does not work as intended. As we describe below, it defines two
distinct scenarios according to the kind of module whose inaccurate behavior has to be
managed:

 Stateless module.

 Stateful module.

Therefore, we have been added to clarify this contrast a brief overview of any
application modules classification depending on their nature, stateless or stateful in
Figure 8.

D4.3 Design of the run-time reconfiguration process 33

Figure 8. Examples of Stateless and Stateful modules.

The need of maintaining the context on a running application is crucial when
performing any replanning action. As we detail below, this simple distinction marks the
biggest difference between a stateless module migration and a stateful one. An
example of a stateless module can be a web application, which does not store any
information about the context of the user, so moving it to another location will not
lead to consistency problems. On the other hand, a stateful module is, for example, a
database. The migration of stateful modules is a very complex task, and there is no
global way to address.

Next, taking into account the need of each we detail each aforementioned scenario
and the needed actions to accomplish the replanning goals. We have added these
specifications because it could be useful to understand the necessary generic process
and operations to manage each application module type. Furthermore, we will
introduce some concrete use cases of a stateless and stateful replanning in Section 6.3.

Management Actions in scenario 1. Replanning on a stateless module (e.g. web
application)

According to the scenario whose performance of a stateless modules does not
expected, with independence of if the user started the migration or it was suggested
by the Monitor component, we describe the necessary actions to carry out this task in
Figure 9.

First, the reconfiguration process is started (1). Then, the application status is used (2)
to compose a new Reconfiguration Plan (that specifically we will call Replanning
Model, since it is focused to solve problems by using replanning actions) which
describes the necessary operations to carry out the reconfiguration process (3). Finally,
the generated plan is executed to accomplish the deployment reconfiguration (4). This
latter step is the one that integrates the real modifications in the current deployment

D4.3 Design of the run-time reconfiguration process 34

and it could be formed by the following sub-steps or sub-routines the migration of a
stateless application consists of the following steps:

4. Reconfiguration Execution.

4.1. Provision the new resources in the target provider.

4.2. Deploy the application module into the new resources.

4.3. Redirect the traffic to the new resource.

4.4. Stop the old application.

4.5. Free the old resources.

All of this previous steps, which are could be grouped a “Reconfiguration execution”
that follows the reconfiguration reconfirmation (Figure 9), ensure that during this
process the application topology remains untouched.

Figure 9. Replanning on a stateless module.

Management Actions in scenario 2. Replanning on a stateful module (e.g. database)

Following the steps in the previous description, we detail the generic process to
address the stateful scenario where a module of the aforementioned type does not
present the desired or expected perform.

Again, a user or the monitoring process could start the management for modifying the
location of some application module (or the whole application because of migrating a
whole application involves the migration of stateless and stateful modules).

https://drive.draw.io/

D4.3 Design of the run-time reconfiguration process 35

A user or the monitor process may wish to move any application module to a new
provider, or the as we can see in Figure 10. For example, he may have found a better
agreement, or other most appropriate features, or because the providers agreement
was changed. In any case, the replanning (reconfiguration) process needs a new target
provider which will use to redeploy any application module.

In Figure 10, the previous process is described in more detail, focusing on a stateful
component reconfiguration. A user or a monitor process wants to migrate a stateful
module, a database, to a new provider. Thus, one of them initializes a reconfiguration
process (1). In this point, we can aware that reconfiguration process is much similar to
the stateless reconfiguration mentioned in the latter section.

Next, we can see how the knowledge about current status of the application
deployment (2) is necessary to compose the reconfiguration plan (3). Following, (4) the
plan is executed to reconfigure (replan) the original deployment. Please note that,
when a stateful application module is moved through any cloud provider, it is essential
to ensure the maintaining the correct (current and expected) module’s state and the
application performance. Again, the step 4 is composed by a sequence of sub-steps:

4. Reconfiguration Execution.

4.1. Provision the new resources in the target provider.

4.2. Keep the current status of the application module which will be migrated.

4.3. Deploy the application module into the new resources.

4.4. Restore the module status in the new.

4.5. Redirect the traffic to the new resource.

4.6. Stop the old application.

4.7. Free the old resources.

For this scenario, two new tasks are included (4.2, 4.4) to permit the modules status
maintenance between the old and new component. Probably, these sub-steps are the
most complicated to achieve, because each kind of module will need an isolate way to
maintain and manage the status and, depending on the module, it could be an error
prone or even an unreachable task.

D4.3 Design of the run-time reconfiguration process 36

Figure 10. User/Alert triggered migration of a stateful module.

Please note that, as in the previous scenario, the application topology is not altered
while the reconfiguration activities occur.

In the next section, it is described as the aforementioned scenarios will be achieved by
SeaClouds.

 SeaClouds Replanning Mechanisms 6.2

In this section, we detail how the described replanning scenarios previously will be
accomplished into the context of SeaClouds. Therefore, we also specify how its
components intersect with each other and the used operations to carry out the
reconfiguration.

As we can see in the overview diagram in Figure 11, when the application is deployed
(using one or several providers) the Monitor will detect the violations on the
applications requisites. If a violation on the application constraints is found out, the
Monitor or the SLA Service triggers a Reconfiguration Event which is sent to the
Planner (step 1). The Planner request confirmation to the user in order to start the
reconfiguration process (step 2 and 3).

https://drive.draw.io/

D4.3 Design of the run-time reconfiguration process 37

Figure 11. SeaClouds Replanning strategy overview.

The Planner receives this notification and, if necessary, generates a Replanning
Application Model (RAM) (step 4). The RAM describes a reconfiguration plan of how
the modules should be reconfigured and the features necessary to accomplish it, for
example the new target providers. Next, a replanning model is shown (Table 7), which
details the required parameters to redeploy an application module in a new cloud
provider.

application: application-ID
module: entity-ID
targetProvider: new Location (for example aws-ec2:us-west)

Table 7. Reconfiguration Application Plan example.

Then, the RAM is received by the Deployer which starts the replanning process (if the
Entity can do a migration), doing the necessary operations in order to reconfigure the
specified application modules (step 5). For example, redistribute any modules over the
new providers, as it has been described in the previous section (Replanning on a
stateful/stateless module scenarios), where the necessary basic actions to accomplish
a replanning are mentioned.

Thus, this process allows to address both stateless and stateful management
scenarios. It is worth noting that in the necessary management actions (described in

https://drive.draw.io/

D4.3 Design of the run-time reconfiguration process 38

the previous section), the process to address both of them (stateless and stateful) is
very similar, and the difference between them is that in a stateful case it is necessary a
tier to maintain the status integrity. SeaClouds assumes a single routine to manage the
event triggering and the RAM composition. And finally, during the migration steps (5)
they are carried out the necessary operations to carry out the replanning according to
the kind of application module that will be being managed.

In the next sections, we detail the necessary steps to replan an application (we do not
analyze scaling in/out an application as it is a subset of a migration). In this case, as
running example along this document, we have used a simple application composed by
three modules: a Front-end module, a Web Services module and a MySQL module,
where Front-end depends on the Web Services and this in turn depends on the
database (Figure 12).

Figure 12. Application topology of the running example.

6.2.1 Generation of the Replanning Application Model

The Replanning Application Model (RAM), is generated by the Planner component. For
this task, the Planner can need the current application status for maintaining the
dependencies and knowing the current resources which are used for the deployment.

In this case, the Planner will use the Live Model information which contains all the
details about the application deployment status, as we can see in Figure 13. As well as
the Planner has to maintain unchanged the application topology during the
reconfiguration. So, enabling the Planner to know about the Live Model will allow to
know the relations between the modules making sure that they will not be altered.

Therefore, for the reconfiguration new cloud resources could be demanded, for
example a new VM in new provider. Thus, for ensuring the best option the Planner will
use the Discoverer to find the services that fits better with the application (and user)
requirements.

Once the plan is composed, where all parameters, constraints and reconfiguration
goals are described, it is sent to the Deployer which gets and processes the RAM,
launching the replanning process.

For example, seeing the application deployment which is shown in Figure 13, if we
wanted to migrate the Front-end from Yellow Cloud to Blue Cloud, a plausible RAM
would be (see Table 8):

D4.3 Design of the run-time reconfiguration process 39

application: Example
module: Front-end
targetProvider: blue cloud

Table 8. Migration description which is contained in a RAM.

Figure 13. Providers searching that will be used in the migrations.

6.2.2 Dependencies Detection and Management

In the first phase of the replanning process, after the Deployer receives the RAM, it
communicates with the Deployer Engine to retrieve the Live Model in order to detect
existing dependencies within different Application Modules (see Figure 14). Once the
dependencies are detected the deployer performs a sequence of calls to effectors
according to the constraints (for example the database must be in read only mode
before moving the data to another provider).

In Figure 14, we can see an example of the dependencies management. In this case, it
is necessary to stop all entities (representation used by the Deployer for the
applications modules [22]) for reconfiguring any application module, for example the

https://drive.draw.io/

D4.3 Design of the run-time reconfiguration process 40

database. The dependencies management ensures that the application behavior does
not rache a failure state during the reconfiguration process. For example, the
dependencies management should avoid that a Front-end tries to persist any data
while the database is being reconfigured.

Figure 14. Replanning, triggering effectors on the Deployer component.

Once the dependencies are resolved, now the deployer has the right sequence of
operations that will to achieve the target configuration described in the RAM.

Finally, the application element will be provisioned over the target cloud, taking into
account the requirements to allow redistribution, and the necessary operations to
maintain the application status.

These reconfiguration operations will depend on several factors, the kind and amount
of the component that should be reconfigured, status of the application, and, of
course, relationships among components (topology).

D4.3 Design of the run-time reconfiguration process 41

An important issue during an application (or any any system) provisioning is the
artifact management. They represents content needed to realize a deployment such as
an executable, a configuration file or data file, or something that might be needed so
that another executable can run (e.g. a library). During a replanning reconfiguration,
SeaClouds has to ensure the artifact integrity over the final application plan because
they are necessary to maintain the desired application behavior.

We saw above as SeaClouds maintains a mapping representation, an entity, for every
application component and cloud resource needed to deploy and manage and
application. In order to accomplish the artifact management issues, these elements
point (or contains) to the artifacts used by each application too. Thus, SeaClouds can
make using of the available artifacts in the replanning reconfiguration operations.

In the next section we will describe how this process happens with a real use case,
detail the reconfiguration operation needed.

 SeaClouds Uses Cases 6.3

In this section, we illustrate the replanning strategy performed by the SeaClouds
platform using the NURO Cloud Gaming Case Study previously presented (see Section
5.3). Specifically, we exemplify each previous scenario (Section 6.1) using a use case
showing as SeaClouds carries out the replanning process depending on the application
component natures that should be reconfigured, stateless and stateful.

As mentioned in Section 5.3, for each use case we describe Unique ID, Use Case Name,
Description, Solution, Issues, Triggering, Actions and Exceptions.

Stateless Scenario. Front-end migration

It has been detected that stateless module of the NURO’s application, in this case the
Front-end, does not work as it was expected. As follow, the performance (QoS) has
worsened, because the SLA constraint was violated. Then, SeaClouds starts the
replanning process to find a new provider that will use to redeploy (migrate) the Front-
end (Table 9).

Field Description

Unique ID StatelessMigration

Use Case Name Stateless Front-end migration

D4.3 Design of the run-time reconfiguration process 42

Description The SLA detects a violation on the application contains that
affects to the Front-end (for example the Apache server is
overcapacity)

Solution Migrating the Front-end module to a new cloud provider whose
features match with the module’s constraints.

Issues - The SLA changes affect to the performance of the Front-
end module, due to the QoS will be altered.

- The original cloud context conditions, cloud resources
which are used to provisioning the application, have
been modified.

- The application performance and behavior could be
affected so it is necessary adjust the deployment to the
new conditions.

Triggering - The SLA SeaClouds component detects this issue and
evaluates the cloud resources and the application
status.

- The SLA component determine if is necessary to trigger
a replanning event to start the reconfiguration process
to migrate the Front-end module to a new target
provides.

Actions - The Planner receives the reconfiguration (migration)
event and generates the Replanning Application Model
(RAM). Then, it is sent to the Deployer.

- The Deployer receives and process the RAM and carries
out the necessary operation to manage the
dependencies and migrate the Front-end module.

Exceptions N/A

Table 9. Stateless Front-end migration use case.

Stateful Scenario. Database Migration

Following the preceding use case, any application components have to be replanning,
but in this case, we refer to a stateful module, the database, according to the scenario
that has not been explained. In this case, the SeaClouds user consider indicate in an
active way the NURO’s database has to be migrated to a new provider (Table 10).

Field Description

D4.3 Design of the run-time reconfiguration process 43

Unique ID Stateful migration

Use Case Name Stateful Backend migration

Description A SeaClouds user decides to migrate the NURO’s database to a
new cloud provider.

Solution Migrating the Database module to a new cloud provider whose
features match with the module’s constraints.

Issues - The original cloud context conditions, cloud resources
which are used to provisioning the application, may have
been modified.

- The application performance and behavior could be
affected so it is necessary adjust the deployment to the
new conditions.

- The module context among with the state must be
preserved.

Triggering - The user starts the migration process.

Actions - The Planner receives the reconfiguration (migration)
event and generates the Replanning Application Model
(RAM). Then, it is sent to the Deployer.

- The Deployer receives and process the RAM and carries
out the necessary operation to manage the
dependencies and migrate the Front-end module.

- As the Database is a stateful element, the Deployer has
to ensure the maintenance of the database status during
the migration to the new target provider.

Exceptions N/A

Table 10. Stateful Backend migration use case.

D4.3 Design of the run-time reconfiguration process 44

 Data Migration and Synchronization 7.

In the previous sections we have presented the two SeaClouds reconfiguration
strategies, repair and replan. Both of them can result in the fact that the application is
moved on a different location, either in the same cloud or even in a different one.

In both cases, if the application intensively uses data stored in some DBMS, it may be
convenient to move such data together with the application itself. Data migration is
then the process needed to move data from a source to a target DBMS, ensuring that
data are not lost nor damaged in the process and that the application exploiting the
data is not negatively affected by this movement.

Thanks to the standardization occurred at the data model level (with DDL), data
migration is a well-established topic for relational databases (see, e.g., [23, 24, 25, 26].
In the NoSQL database field, to the best of our knowledge, the support to data
migration across different NoSQLs is quite limited. Some databases provide tools to
extract data from them (e.g., Google Bulkloader [27]), but in the end, it is up to the
programmer to actually map those data to the target database data model and
perform the migration.

Hegira4Cloud [28] is a research effort being developed under the MODAClouds project
(www.modaclouds.eu) that focuses on data migration between NoSQL Database as a
Service (DaaS), trying to preserve their peculiar characteristics. More specifically, this
framework is based on the idea of extracting data from the source DaaS, transforming
them into an intermediate format and then into the target DaaS. The intermediate
format is defined by an intermediate meta-model described in detail in [28]. It takes
into account the features of the most widely used NoSQL and it has been shown to be
sufficiently general for dealing with the features of so-called columnar and key-value
NoSQL databases [29,30].

The adoption of a new NoSQL system in Hegira4Cloud requires only the development
of the translator from this new NoSQL into the intermediate format and vice versa.
Furthermore, thanks to this intermediate meta-model, Hegira4Cloud is able to
preserve the data types, read consistency policies, and secondary indexes supported
by the source DaaS.

In particular, Hegira4Cloud preserve data types by keeping track of the type of each
migrated data explicitly, even though that type is not available in the destination DaaS.
This is accomplished by performing the following procedure: data converted into the
intermediate format are always serialized into a property value field and the original
data type is stored as a string into a property type field. When data are converted from
the intermediate format into the target one, if the destination DaaS supports that
particular data type, the value is deserialized. Otherwise, the value is kept serialized
and it is up to the application level to correctly interpret (deserialize) the value
according to the type field.

As extensively detailed in [28] and [31], read consistency policies are handled through
the concept of Partition Group. Entities that require strong consistency on read

http://www.modaclouds.eu/

D4.3 Design of the run-time reconfiguration process 45

operations will be assigned, in the intermediate format, to the same Partition Group
value. Entities managed according to an eventual consistency policy will be assigned to
different Partition Group values. When entities share the same Partition Group, if the
target database supports strongly consistent read operations, then Hegira4Cloud
adapts data accordingly (depending on the target database data-model). Otherwise,
Hegira4Cloud simply persists the data so as that they will be read in an eventual
consistent way, and creates an auxiliary data structure to preserve the consistency
information.

Finally, secondary indexes are preserved across different DaaS by means of the
property indexable field. More specifically, during the conversion into the intermediate
format, if a certain property needs to be indexed, it is marked as indexable. When
converting into the target format, if the target DaaS supports secondary indexes, the
property is mapped consequently according to the specific interfaces provided by the
target database. Otherwise, Hegira4Cloud creates an auxiliary data structure on the
target DaaS which stores the references to the indexed properties, so that, when
migrating again these data to another database supporting secondary indexes, they
can be properly reconstructed.

The high level architecture of Hegira4Cloud is shown in Figure 15. A Source Reading
Thread extracts data from the source database, one entity at a time or in batch (if the
source database supports batch operations) and performs the conversion, by means of
the respective direct translator, into the intermediate format and puts the data in a
queue. The queue is used as a buffer, in order to decouple the reading and writing
processes and manage the different throughput of the source and target DaaS. When
data are in the queue, a Target Writing Thread extracts and converts them into the
target DaaS data-model, thanks to an inverse translator (specific for each supported
database), and stores these data into the target DaaS. Hence, translators are in charge
of mapping data back and forth between the source/target DaaS and the intermediate
format, performing the (de)serializations, checking for data types support, properly
mapping indexes and adapting the data to preserve different read consistency policies.

D4.3 Design of the run-time reconfiguration process 46

Figure 15. Hegira4Cloud high level architecture.

D4.3 Design of the run-time reconfiguration process 47

 Conclusions 8.

In this document, we have presented a first design of the run-time reconfiguration
process. Firstly, we have introduced the reconfiguration strategies in a general way,
with the corresponding motivations, and the SeaClouds approach in comparison with
other works. Secondly, we describe more in detail how SeaClouds applies the
strategies: repairing and replanning, mapping the situations with some scenarios
considered in the use cases used in SeaClouds. Finally, we describe the data migration
and synchronisation process in SeaClouds.

The options we studied in order to solve the reconfiguration of a cloud application are
well known by previous researches. The key of our approach is to remove the
restrictions around the reconfiguration scenarios showed in previous work. In
particular we avoid focusing on inter-provider migration restrictions, and, instead,
performing migration between providers.

In terms of SeaClouds platform, the proposed reconfiguration process is orchestrated
by the Planner in connection with the Monitor and the Deployer, based on a strong
monitoring system that will be aware of the live status of the application. The Deployer
implements the mechanisms that will execute any required action coming from both
Planner and/or Monitor.

In summary, in this first desing we have tried to concrete the strategies which are
being studied at design level and analysed at implementation level in the SeaClouds
platform.

D4.3 Design of the run-time reconfiguration process 48

References

1. U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity provisioning
system for the cloud. In the 31st International Conference on Distributed Computing
Systems (ICDCS), pp. 559 –570, 2011.

2. A. Verma, G. Kumar and R. Koller. The cost of reconfiguration in a cloud. In The 11th
International Middleware Conference Industrial track, Middleware Industrial Track '10
(ACM), pp. 11-16, 2010.

3. V. Andrikopoulos, T. Binz, F. Leymann and S. Strauch. How to adapt applications for
the Cloud environment. In Computing (Springer), vol. 95, no. 6, pp. 493-535, 2013.

4. D. Petcu. Portability and interoperability between clouds: challenges and case study.
In Towards a Service-Based Internet. (Springer), pp. 62–74, 2011.

 . . Miranda, .M. Murillo, . uill en and C. Canal. Identifying adaptation needs to
avoid the vendor lock-in effect in the deployment of cloud SBAs. In Proceedings of the
2nd International Workshop on Adaptive Services for the Future Internet and 6th
International Workshop on Web APIs and Service Mashups (ACM), pp, 12–19, 2011.

6. N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predictive
models for workload forecasting. In Proceedings of the 4th Intl. Conference on Cloud
Computing, ser. CLOUD 2011. (IEEE), pp. 500–507, 2011.

7. R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual machine provisioning based on
analytical performance and qos in cloud computing environments. In International
Conference on Parallel Processing (ICPP), pp. 295 –304, 2011.

8. J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. Dynamic Configuration
Management of Cloud-based Applications. In Proceedings of the 16th International
Software Product Line Conference - Volume 2, SPLC ’12 (ACM), pp. 171–178, 2012.

9. EMF: Eclipse Modeling Framework, http://www.eclipse.org/emf

10. D. Steinberg, F. Budinsky, M. Patenostro and E. Merks. EMF: Eclipse Modeling
Framework, 2nd edn. Addison Wesley, Reading, 2008.

11. H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. Online self- reconfiguration
with performance guarantee for energy-efficient large- scale cloud computing data
centers. In The 2010 IEEE International Conference on Services Computing (SCC '10)
(IEEE), pp. 514-521, 2010.

12. N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and dynamic reconfiguration
planning for distributed software systems. In Proceedings of the 15th IEEE
International Conference on Tools with Artificial Intelligence (IEEE), pp. 39 - 46, 2003.

http://www.eclipse.org/emf

D4.3 Design of the run-time reconfiguration process 49

13. S. Gómez Sáez, V. Andrikopoulos, F. Leymann, and S. Strauch, Towards Dynamic
Application Distribution Support for Performance Optimization in the Cloud. In
Proceedings of CLOUD’14 (IEEE), pp. 248 - 255, 2014.

14. Cloud4SOA repository. Available at: https://github.com/Cloud4SOA/Cloud4SOA

15. Apache Brooklyn. Available at: https://brooklyn.incubator.apache.org/

16. MODAClouds EU Project. Available at: http://www.modaclouds.eu/

17. DEEP: DPWS Enabled dEvices Platform. Available at: http://com-gisum-
deep.appspot.com/

18. Flyway. Available at: http://flywaydb.org/

19. CloudFoundry environment variables. Available at:
http://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-
SERVICES

20. Using environment variables in OpenShift. Available at:
https://developers.openshift.com/en/managing-environment-
variables.html#database-variables

21. Official definition of Brooklyn policies:
https://brooklyn.incubator.apache.org/v/latest/concepts/policies.html/

22. SeaClouds Project. Deliverable D4.1 Definition of the multi-deployment and
monitoring strategies (SeaClouds Consortium), http://seaclouds-
project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-
deployment_and_monitoring_strategies.pdf, 2014.

23. Oracle SQL Developer Migration. Available at:
http://www.oracle.com/technetwork/database/migration/index- 084442.html

24. Flyway repository. Available at: https://github.com/flyway/flyway

25. LiquiBase. Available at: http://www.liquibase.org

26. Mysql workbench: Database migration. Available at:
http://www.mysql.com/products/workbench/migrate/

 27. Google Bulkloader. Available at:
https://chromium.googlesource.com/external/googleappengine/python/+/
200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/ bulkloader.py

28. M. Scavuzzo, E. Di Nitto, and S. Ceri. Interoperable data migration between NoSQL
columnar databases. In proceedings of the first International Workshop on Engineering
Cloud applications and Services. In enCASE 2014. (IEEE), pp. 154 – 162. 2014.

https://github.com/Cloud4SOA/Cloud4SOA
https://brooklyn.incubator.apache.org/
http://www.modaclouds.eu/
http://com-gisum-deep.appspot.com/
http://com-gisum-deep.appspot.com/
http://flywaydb.org/
http://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.run.pivotal.io/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
https://developers.openshift.com/en/managing-environment-variables.html#database-variables
https://developers.openshift.com/en/managing-environment-variables.html#database-variables
https://brooklyn.incubator.apache.org/v/latest/concepts/policies.html/
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://www.oracle.com/technetwork/database/migration/index-%20084442.html
https://github.com/flyway/flyway
http://www.liquibase.org/
http://www.mysql.com/products/workbench/migrate/
https://chromium.googlesource.com/external/googleappengine/python/+/%20200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/%20bulkloader.py
https://chromium.googlesource.com/external/googleappengine/python/+/%20200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/%20bulkloader.py

D4.3 Design of the run-time reconfiguration process 50

29. B. Scoffield, Nosql – death to relational databases. In presentation at the
CodeMash, 2010. Available at: http://www.slideshare.net/bscofield/ nosql- codemash-

30. A. Popescu. (2010, 02) Nosql at codemash – an interesting nosql categorization.
Available at: http://nosql.mypopescu.com/post/ 396337069/presentation- nosql-
codemash- an- interesting- nosql

31. M. Scavuzzo, Interoperable data migration between NoSQL columnar. Databases.
Master’s thesis, Politecnico di Milano, 2013. Available at:
http://dinitto.faculty.polimi.it/wp-content/uploads/MarcoScavuzzo.pdf

http://www.slideshare.net/bscofield/%20nosql-%20codemash
http://nosql.mypopescu.com/post/
http://nosql.mypopescu.com/post/
http://dinitto.faculty.polimi.it/wp-content/uploads/MarcoScavuzzo.pdf

