SeaCclLOoOUuUDS

AGILITY AFTer DePLoOoYmenT

Modelling

Planning Conftrolling

SeaClouds Project

D4.4 Dynamic QoS verification and SLA
management approach

Project Acronym
Project Title

Call identifier

Grant agreement no.
Start Date

Ending Date

Work Package
Deliverable code
Deliverable Title
Nature
Dissemination Level
Due Date:
Submission Date:
Version:

Status

Author(s):

Reviewer(s)

SeaClouds

Seamless adaptive multi-cloud management of service-based
applications

FP7-1CT-2012-10

Collaborative Project

15t October 2013

31t March 2016

WP4. SeaClouds run-time environment

D4.4

Dynamic QoS verification and SLA management approach
Report

Public

M18

03" April 2015

1.0

Final

Mattia Buccarella (UPI), Marc Oriol (UPI), Dionysis
Athanasopoulos (POLIMI), Javier Cubo (UMA), Roman Sosa
(ATOS), Antonio Brogi (UPI)

Elisabetta Di Nitto (POLIMI), Christian Tismer (NURO)

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Maedeling Planning Controling

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme
PU Public X
PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

Cco Confidential, only for members of the consortium (including the Commission)

Version History

Authors, contributors,
reviewers

0.1 09/03/15 First Table of Contents Antonio Brogi, Javi Cubo,

Francesco D’andria,

Elisabetta Di Nitto, Roman

Sosa

0.2 18/03/15 First contributions to the document Marc Oriol, Mattia

Buccarella, Dionysis

Athanasopoulos, Javier

Cubo

0.3 23/03/15 Next contributions in some sections, Roman Sosa, Dionysis

and checking other sections Athanasopoulos, Javier

Cubo

0.4 01/04/15 Final contributions in the document Mattia Buccarella, Marc

Oriol, Javier Cubo, Roman

Sosa

0.5 02/04/15 Reviews Elisabetta Di Nitto, Christian

Tismer

1.0 03/04/15 Final version Marc Oriol, Mattia

Buccarela

Version Date Comments, Changes, Status

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Cenfrolling

Table of Contents

[CTo LAV U] 0 0] 0 T 1 V2 U P PP PP 6
L. INErOAUCTION . e e 7
1.1. Structure of this dOCUMENTcoiiiiiiiiie e 7
1.2 GlOSSArY Of ACTONYIMSeuiiiiiieeie e et e eeercrrre e e e e e e e e traeeeeeeeesennsbraeeeeeeseennnnreeees 8

2. Specification of Metrics and MoNItOring rulesccccuvvveeeeeieeiciireeeee e 9
2.2, LiSt Of MEEIICS oo 10
2.3. From metrics to MONItOriNG rUIESccovviiiiiiiiiiee et 14
2.3.1. Model of Monitoring RUIEccceee i 15
2.3.2. Using the Model of Monitoring Rule in Measuring Metric Values 18

3. The MONITOMINE PrOCESS ...cciiiieetirierieeeeeieiiirrreeeeeeeeierrereeeeesesessraereeeeessesssrseneeeeessensnns 19
4. Service Level Agreements asseSSMENTcccuuvveeeeeeeiiiiiiireeee e e eeccrrrree e e e e eesarreeeeeeeeens 21
4.1 The tWO SLA TEVEIS ..o e e 21
4.2 The relation with the MONItOr........ccooiiiiiiii e 22
4.3 From the user requirements to the SLA ..ot 22

5. Dynamic orchestration and verification of the QoS and SLAooeiieiiiiieeeeniene, 24
5.1 The Deployer as orchestrator of the Monitoring and SLA assesment................. 24
5.2 From monitoring results to repairing and replanning........cccccevvveeeeeeeeiiccivreeeneenn. 26

6. CONCIUSION .ot s 27

[R0=] L= Lol L TR 28

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach _

Modeling Plonning Controling

List of Figures

Figure 1. The sequence diagram that specifies the monitoring process.cc..cccceeuuuue. 20
Figure 2. SLAs in the Web Application in YAMLuveeiviiiiiciiiiieeeec e 24

Figure 3. Interaction flow between the SeaClouds components.......ccccccvveerreeeeercnnnnen. 25

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Modeling Plonning Controling

List of Tables

TADIE 1. ACTONYIMIS. weeeiiiieiiiiiieeee et e e eeee e e e e e e e e bbb e e e e e eessessbbaaeeeeeeeessnsrrsaeeeeeenns 8
Table 2. Template to define the MEriCS ... 10
Table 3. The XML specification of a monitoring rule........ccceevvveeieiiiiiiiiieeeeeeeeeeeneeeee, 18

Table 4. Glossary of the metric terms agreed for SeaClouds.c.cccoeeeevvveeeeeeeeeicnnnen. 18

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach _

Medeling Planning Confrolling

Executive summary

This deliverable describes the dynamic Quality of Service (QoS) verification and Service
Level Agreement (SLA) management performed by SeaClouds.

In this document, we firstly identify and define a list of metrics that are commonly used
to represent the properties and the requirements of the services involved in a cloud-
based application. Secondly, we specify the syntax of the monitoring rules, which
includes the metrics, the entities to be monitored, how data should be aggregated and
the monitoring actions. From these rules, the monitor is configured and the monitoring
process is able to assess if the QoS is met. Then we describe the SLA Assessment, which
is connected to the monitor, receives QoS violations, and performs dynamic verification
of the SLAs considering also the Quality of Business (QoB).

Finally, we describe within the architecture of SeaClouds, how the different components
responsible of the aforementioned activities are orchestrated and how repairing or
replanning is conducted if a violation occurs.

seacLoubDs _ o
ACEISASISr DEFLEmanT D4.4 Dynamic QoS verification and SLA management approach

Modeling Plonini Centralling

1. Introduction

SeaClouds aims at managing multi-cloud distributed applications. To this aim, it is
essential the monitoring, troubleshooting and assurance of the Quality of Service (QoS)
at runtime. SeaClouds shall extend the concept of monitoring services from the one-
cloud to the multi-cloud perspective, which requires the proper support and
implementation. Furthermore, if a violation occurs, repairing or replanning actions
should be conducted to restore the QoS.

In this deliverable, we first identify different metrics that are suitable to represent the
properties of a multi-cloud application. These metrics have been derived by analyzing
the case studies described in D6.1 [1], taking into account the most common and
important characteristics, resources and needs that are involved in such scenarios.

These metrics are part of the monitoring rules. The monitoring rules are XML
documents, which includes the metrics, the entities to be monitored, how data should
be aggregated and the monitoring actions. These rules are used to initialize the monitor,
which measures the values of the desired metrics. To do so, the monitor is composed of
different data collectors, which are components in charge of collecting data concerning
the monitored resources.

Based on the monitoring data, SeaClouds evaluates the monitoring policies. If a violation
occurs, SeaClouds tries to fix it by repairing the current deployment plan, or, replanning
a new deployment plan.

We also address the Service Level Agreement (SLA) Assessment and describe how
SeaClouds perform Quality of Business (QoB) analysis. That is, a long-term analysis on
metrics that impact on the business of the application. This QoB evaluation relies on the
QoS evaluation: it uses the detected QoS violations from the monitor to assess the QoB
constraints, playing a role in a high-level perspective.

Finally, we describe within the architecture of SeaClouds, how the different components
responsible of the aforementioned activities are orchestrated.

1.1. Structure of this document

The document is structured as follows: in section 2, we specify the metrics and the
monitoring rules. Section 3 describes the monitoring process in detail. Section 4
describes the SLAs assessment. Section 5 details how the orchestration works. Finally,
section 6 provides the conclusions for this document.

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach _

Medeling Planni Controlling

1.2 Glossary of Acronyms

Acronym Definition
AAM Abstract Application Model
ADP Abstract Deployment Plan
DAM Deployable Application Model
laaS Infrastructure-as-a-Service
PaaS Platform-as-a-Service
QoB Quality of Business
QoE Quality of Experience
QoS Quality of Service
RTT Round-Trip Time
Saa$s Software-as-a-Service
SLA Service Level Agreement
SLO Service Level Objective
XML eXtensible Markup Language

Table 1. Acronyms.

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach _

Medeling Planni Controlling

2. Specification of Metrics and monitoring rules

In this section, we describe the metrics used to represent the service properties and
requirements of the cloud-based application in SeaClouds. These metrics are used in
SeaClouds with the purpose of suitably give a quantitative measure of the properties of
the cloud services and the cloud application. SeaClouds measures these metrics with
the following objectives: (1) detect at runtime any violation of the SLA(s); and (2) provide
runtime information to the optimization process if replanning is triggered.

Specification of metrics used in SLAs
SeaClouds is required to monitor the metrics specified in the SLAs. As it will be described
later in section 4.1. There are two levels of SLAs:

e Customer - Application Provider SLA (C-AP SLA)
e Application Provider - Cloud Provider SLA (AP-CP SLA)

The C-AP SLA is the SLA that the customer has with the Application Provider (i.e. SLA of
the Application), whereas the AP-CP SLA is the SLA that the Application Provider has with
the cloud services (e.g. Amazon EC2).

For such a reason, one property is assigned one scope, i.e., it can be associated to one
or more specific application modules individually or to the application seen as a whole
(e.g., composition of modules). For this reason, the metrics used to measure these
properties are also divided in two categories, with the same logic: module metrics and
application-wide metrics.

Specification of metrics used for the optimization process

The optimization process requires QoS information in order to generate a correct
deployment plan. If a violation on the SLA(s) occur, a replanning is triggered, and results
of the monitored metrics are used to generate an accurate plan.

SeaClouds support of metrics

In order to define the metrics that the monitor should support, we may distinguish
between compulsory and non-compulsory metrics.

e Compulsory metrics are those metrics that may be included in the SLAs as they
may be required by the user. SeaClouds should provide support for these type of
metrics in order to detect and recover from possible SLA violations. It is worth to
mention, that the list of compulsory metrics is not intended to define what the
SLAs should include, but what SeaClouds should support based on the common
properties defined in SLAs in the field of cloud computing. On the other hand, it
is not intended to be a complete list of all possible metrics in an SLA, but defines
the support that SeaClouds is currently aiming at.

e Non-compulsory metrics are those metrics that are not strictly required, as they
are not part of SLAs, but can be useful during the replanning process as an
augmented source of information. This information is used by heuristic
algorithms to infer, in a more precise way, the overall performance of a new
deployment plan.

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

In the following section, we define the list of metrics, using the template shown in Table
2.

Metric Name: | name of the metric

Description: short description

Scope: Identifies whether it is an application-wide or module metric
Included in Identifies if the metric is used in SLAs (Yes/No)

SLAs:

Optimizer Identifies if the metric is useful for the optimizer in the replanning
Criterion: phase (Yes/No)

SeaClouds Identifies if the metric is compulsory based on its relevance for the
support: optimizer and SLA assessment (Compulsory/Optional)

Table 2. Template to define the metrics

2.2. List of metrics

In this section, we describe the list of elicited metrics that will be used as part of the
monitoring rules. These metrics belong to Performance and reliability characteristics [2],
which are common characteristics in the field of cloud computing and of interest for the
SeaClouds project. It is worth mentioning that the following list is not intended to be the
final, and some changes might occur in subsequent phases of the project (e.g. new
required metrics can be identified).

Metric Response time
Name:

Description: | It is the expected response time of the deployed application/module
to fulfill its functionalities. This response time does not include the
network latency between the end-user and the application. But, it is
the time interval between the instant in which the request is received
by the application/module and the instant in which the corresponding
output is produced.

Scope: application-wide, module

Included in Yes
SLAs:

seacLoubDs

AGILITY AFTET DEPLOYMENT

Modeling Plonning Controling

Optimizer Yes

Criterion:

SeaClouds Compulsory
Support:

Metric CPU utilization
Name:

Description: | Itis the percentage showing the load of the CPU hosting the module.
Scope: Module
Included in | Yes

SLAs:

Optimizer Yes

Criterion:

SeaClouds Compulsory
Support:

Metric Name:

Memory utilization

Description: | Itis the amount of memory, expressed in megabytes (MB), utilized by
a certain machine on the cloud. This metric has both module and
application-wide scopes. While the module scope is the most trivial,
the application-wide can be expressed by aggregation (i.e., sum) of
each machine value.

Scope: Application-wide, Module

Included in | Yes

SLAs:

Optimizer Yes

Criterion:

SeaClouds Compulsory

Support:

D4.4 Dynamic QoS verification and SLA management approach

seacLoubDs

AGILITH AFTEN DEPLOYMENT

Medeling Planning Confrolling

Metric Name:

Storage utilization

Description: | It is the amount of disk quota utilized on the cloud. It is expressed in
gigabyte (GB). This metric has both module and application-wide
scopes. While the module scope is the most trivial, the application-
wide can be expressed by aggregation (i.e., sum) of each module
values.

Scope: Application-wide, module

Included in | Yes

SLAs:

Optimizer Yes

Criterion:

SeaClouds Compulsory

Support:

Metric Bandwidth

Name:

Description: | The bandwidth provides information about the amount of data that
can be handled by the cloud Internet connection. Structurally, this
property is represented by means of two values: the uplink bandwidth
and the downlink bandwidth. In our case, the Mbps (Megabit per
second) is a suitable unit of measure to represent these two values.
With respect to the provider, the uplink bandwidth is the bit rate that
the endpoint is able to push towards the outside, while the downlink
bandwidth is the bit rate that the endpoint is able to receive from the
outside.

Scope: Module

Included in | No

SLAs:

Optimizer Yes

Criterion:

SeaClouds Optional

Support:

D4.4 Dynamic QoS verification and SLA management approach

seacLoubDs

AGILITY AFTET DEPLOYMENT

Modeling Plonini Contralling

Metric Network latency

Name:

Description: | Given two endpoints (e.g., two application nodes, each deployed on
its own cloud, communicating with one another) this property is
measured by the time, expressed in milliseconds (ms), required by the
transmission of one unit of traffic, to reach the recipient, after the
dispatch from the sender, and come back. This trip delay is known as
round-trip time (RTT). It is very important to point out that the RTT is
a property that makes sense only when measured with respect to
couples of endpoints. To measure this value, there must be a clear
graph representing all the possible connections involved in a multi-
cloud application (e.g., communication relationships across
application modules), so that it can be evaluated across two nodes,
say N1 and N2, that have at least one path allowing a transmission
unit to travel from N1 (N2) to N2 (N1).

Scope: Application-wide

Included in | No

SLAs:

Optimizer Yes

Criterion:

SeaClouds Optional

Support:

Metric Name: | Throughput

Description: The throughput of a given connection link is the link capacity that is
actually used. As well as the bandwidth, this value is measured in
Mbps and it is provided with respect to a certain time interval (e.g.,
1h).

Scope: Module

Included in | No

SLAs:

Optimizer Yes

Criterion:

SeaClouds Optional

Support:

D4.4 Dynamic QoS verification and SLA management approach

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Cenfrolling

Metric Availability
Name:

Description: | The availability of the application in a given time interval. This
availability is expressed as a percentage value and it should be
provided not only with instant granularity, but also for the past times.
Availability in past day, availability in past week and availability in past
month would be a great level of detail for the evaluation of a cloud to
be considered. Each of this value is also a percentage averaged among
the instant percentages detected during the past monitorings.

Scope: Application-wide, Module

Included in | Yes

SLAs:

Optimizer Yes
Criterion:

SeaClouds Compulsory
Support:

2.3. From metrics to monitoring rules

To measure the values of a metric, which corresponds to a QoS property of an
application as a whole or to an application module, we need a formal way to specify: (i)
which entity on the cloud should be monitored, (ii) which kind of data should be
collected, (iii) how these data should be aggregated, and possibly, (iv) what monitoring
actions should be performed under what conditions. Conceptually, all this information
defines a monitoring rule.

Since there is no mature model of monitoring rule based on TOSCA standard, we
properly adapt the model of monitoring rule, which has already been proposed in
MODACIouds project [3] in SeaClouds.

Firstly, we present the model of monitoring rule, specified in XML schema of Table 3 and
explained in subsection 2.3.1. Secondly, we describe the practical usage of this model in
measuring the values of the QoS metrics of the performance and the availability of an
application in subsection 2.3.2.

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

2.3.1. Model of Monitoring Rule

Overall, a monitoring rule specifies a set of monitoring entities, the kind of collected
data, the aggregation way of collected data, and monitoring actions.

Monitoring Target

In particular, to specify a monitoring entity, a rule includes a set of monitoring targets
(line 3 in Table 1). Each target is characterized by its class and its type (lines 38-41 in
Table 1). The class of a monitoring target specifies the kind of the monitored entity,
which is related to the infrastructure layer of a cloud provider (e.g. monitoring the virtual
machines of a cloud for measuring its availability), or to the application layer of the cloud
(e.g. monitoring the performance of a method of a user-provided application). The type
of a monitoring target specifies the particular instance of an entity that is monitored. It
means that a concrete entity is monitored, which can be a specific virtual machine at
the infrastructure layer or an instance of the abstract description of an application.

Monitoring Metric

To specify the kind of the monitoring data, a rule includes a monitoring metric (line 4 in
Table 3). A metric corresponds to the kind of measurement that will be performed on
the monitoring target (lines 42-53 in Table 3). As described in section 2.1, a metric may
be related to the measurement of the values of a consumed resource in the monitoring
target (e.g., CPU consumption), or it may be related to a non-functional property of the
monitored application (e.g., response time). A metric is characterized by a set of
parameters (line 44 in Table 3), which specify the configuration settings of the software
component that collects data/values for this metric. These settings may differ from data
collector to data collector. For instance, a data collector, which measures CPU
consumption, needs the sampling period. On the contrary, a data collector, which
measures SQL query statistics, needs the authentication credentials to a database
server.

Aggregation Metric

In case an aggregation of monitoring data is required, a rule contains an aggregation
metric (line 5 in Table 3). Note that the provision of an aggregation metric is optional.
To perform an aggregation, an aggregation function is required (line 65 in Table 3). Such
a function can be the average, percentile, max, min, and so on of monitoring data. An
aggregation metric optionally involves a grouping class (line 64 in Table 3) and a set of
parameters (line 56 in Table 3). A grouping class specifies the monitoring entity based
on which the aggregation will be performed. For instance, if the grouping class is virtual
machine then the monitoring data will be aggregated per virtual machine. A parameter
refers to restrictions on the value of an aggregation function. For instance, if the
aggregation function is the percentile, then a parameter can be the lowest value of the
percentile, over which the aggregation will be performed.

Monitoring Action

Regarding what monitoring action and under which condition it should be performed, a
rule includes two parts, a condition (line 6 in Table 3) and a set of actions (line 7 in Table

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Confrolling

3). Since the monitoring is not necessarily accompanied by actions, these parts of a rule
are also optional. A condition (lines 33-37 in Table 3) is a logical expression that is applied
on the value of the aggregation metric, if the latter exists. Otherwise, the condition is
applied on the monitoring data values. In case the condition value is true, the set of
actions is executed. An action can be the execution of a RESTful invocation, the print of
the values of multiple metrics, or even the removal of the rule (lines 79-89 in Table 3).

A monitoring rule is further characterized by the time interval (in seconds) between its
two consecutive evaluations, timeStep (line 13 in Table 3). Also, a rule is characterized
by the time range (in seconds), timeWindow (line 14 in Table 1), in which monitoring
data are aggregated at every timeStep. Another attribute of a rule is the flag,
startEnabled (line 12 in Table 3), which specifies whether the rule evaluation should
start.

Line XML Schema
1 | <xs:complexType name="monitoringRule">
2 <xs:sequence>
3 <xs:element name="monitoredTargets" type="mo:monitoredTargets"/>
4 <xs:element name="collectedMetric" type="mo:collectedMetric"/>
5 <xs:element name="metricAggregation" type="mo:monitoringMetricAggregation" minOccurs="0"/>
6 <xs:element name="condition" type="mo:condition" minOccurs="0"/>
7 <xs:element name="actions" type="mo:actions"/>
8 </xs:sequence>
9 <xs:attribute name="id" type="xs:string" use="required"/>
10 <xs:attribute name="Iabel" type="xs:string"/>
11 <xs:attribute name="relatedQosConstraintld" type="xs:string"/>
12 <xs:attribute name="startEnabled" type="xs:boolean"/>
13 <xs:attribute name="timeStep" type="xs:string" use="required"/>
14 <xs:attribute name="timeWindow" type="xs:string" use="required"/>
15 | </xs:complexType>

16 | <xs:simpleType name="probability">

17 <xs:restriction base="xs:float">
18 <xs:maxlInclusive value="1"/>
19 <xs:mininclusive value="0"/>
29 </xs:restriction>

21 | </xs:simpleType>

22 | <xs:complexType name="monitoredTargets">

23 <xs:sequence>

24 <xs:element name="monitoredTarget" type="mo:monitoredTarget" maxOccurs="unbounded">
25 <xs:annotation>

26 <xs:appinfo>

27 <jaxb:property name="monitoredTargets"/>

28 </xs:appinfo>

29 </xs:annotation>

30 </xs:element>

31 </xs:sequence>

32 | </xs:complexType>

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Confrolling

33 [<xs:complexType name="condition">

34 <xs:simpleContent>
35 <xs:extension base="xs:string"/>
36 </xs:simpleContent>

37 | </xs:complexType>

38 | <xs:complexType name="monitoredTarget">

39 <xs:attribute name="type" type="xs:string" use="optional"/>
40 <xs:attribute name="class" type="xs:string" use="required"/>
41 | </xs:complexType>

42 | <xs:complexType name="collectedMetric">

43 <xs:sequence>

44 <xs:element name="parameter" type="pa:parameter" minOccurs="0" maxOccurs="unbounded">
45 <xs:annotation>

46 <xs:appinfo>

47 <jaxb:property name="parameters"/>

48 </xs:appinfo>

49 </xs:annotation>

50 </xs:element>

51 </xs:sequence>

52 <xs:attribute name="metricName" type="xs:string" use="required"/>

53 | </xs:complexType>

54 | <xs:complexType name="monitoringMetricAggregation">

55 <xs:sequence>

56 <xs:element name="parameter" type="pa:parameter" minOccurs="0" maxOccurs="unbounded">
57 <xs:annotation>

58 <xs:appinfo>

59 <jaxb:property name="parameters"/>

60 </xs:appinfo>

61 </xs:annotation>

62 </xs:element>

63 </xs:sequence>

64 <xs:attribute name="groupingClass" type="xs:string"/>

65 <xs:attribute name="aggregateFunction" type="xs:string" use="required"/>

66 | </xs:complexType>

67 | <xs:complexType name="actions">

68 <xs:sequence>

69 <xs:element name="action" type="mo:action" maxOccurs="unbounded">
70 <xs:annotation>

71 <xs:appinfo>

72 <jaxb:property name="actions"/>

73 </xs:appinfo>

74 </xs:annotation>

75 </xs:element>

76 </xs:sequence>

77 | </xs:complexType>

79 | <xs:complexType name="action">

79 <xs:sequence>

80 <xs:element name="parameter" type="pa:parameter" minOccurs="0" maxOccurs="unbounded">
81 <xs:annotation>

82 <xs:appinfo>

83 <jaxb:property name="parameters"/>

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Modeling Planni Controlling
84 </xs:appinfo>

85 </xs:annotation>

86 </xs:element>

87 </xs:sequence>

88 <xs:attribute name="name" type="xs:string" use="required"/>
89 | </xs:complexType>

Table 3. The XML specification of a monitoring rule.

2.3.2. Using the Model of Monitoring Rule in Measuring Metric Values

In a first place, except for the specification of the syntax of a monitoring rule, a common
glossary of metric names is required. This glossary contains the performance and
availability metrics that are commonly used by the Planner (to specify the monitoring
rules), the Monitor (to execute the monitoring rules), and the Deployer (to install the
data collectors, required for gathering the metric values).

Based on the list of metrics defined in section 2.2, we provide in Table 4 the commonly
accepted terms that we use on the different components to refer to them.

Metric Agreed term
Compulsory metrics

Response time ResponseTime

CPU utilization CPUUtilization

Memory utilization MemoryUtilization

Storage Utilization Queries

Availability Availability

Optional metrics

Bandwidth Bandwidth
Network Latency Latency
Throughput Throughput

Table 4. Glossary of the metric terms agreed for SeaClouds.

In a second place, instances of monitoring rules, suitable for measuring the
aforementioned metrics, can be formed by following the monitoring ontology [4], used
by the MODAClouds monitor [3]. Taking an example, assume that we would like to
calculate the average CPU consumed by an application per cloud virtual machine. To this

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

end, MODACIlouds monitoring ontology defines the class VM that corresponds to a cloud
virtual machine. Thus, we should write a monitoring rule that specifies the class VM
(monitoredTarget class="VM”) as a monitoring target, the Average as an aggregation
function (aggregationFunction name="Average”), and the class VM as a grouping class,
based on which the aggregation will be performed (groupingClass= "VM”). In this way,
as required, the average percentage of CPU utilization over multiple virtual machines is
calculated.

3. The monitoring process

The SeaClouds platform helps end-user in the design, the deployment, the management,
and the reconfiguration of complex applications across clouds. In other words, the
SeaClouds platform supports end-user at the design and the runtime of the lifecycle of
an application. The monitoring part of the SeaClouds platform supports the runtime part
of the application lifecycle. In this section, we focus on describing the runtime process
followed by the SeaClouds monitoring. The monitoring process is depicted in the
sequence diagram of Figure 1 and is further described as follows.

In particular, the monitoring process can be divided into two main parts. The first part
concerns the initiation and the initialization of the Monitor. In a nutshell, this part
includes the starting up of the internal components of the Monitor and its initialization
with the necessary information (e.g. monitoring rules) for acting about the monitoring
data. The second part includes the actions that the Monitor performs when the rules
are violated.

Concerning the first part, by the time an application has been designed and its
deployment plan has been provided to the Deployer, the latter initiates the Monitor. In
this way, the internal servers of the Monitor (Monitoring Manager, Knowledge Base,
and Data Analyzer), which are able to collect data from the monitored cloud machines
and to analyze them, are started up. After the initiation of the Monitor, the Deployer
provides to the Monitor the description of the current deployment plan for the current
application and the monitoring policies in the form of monitoring rules.

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

Deployer Monitor Planner SLA Service Dashboard Multi-cloud

I
I
I
— initiatePlatiorm

installDeploymentPlan

installMonitoringRules

getDClnstallationFiles

»
sendinstallationFiles " ‘

installDCs

0

sendMonitpringData

sendMonitoringData !

sendEvent

sendEvent

1
sendEvent o

| 1]

|) _

sendEvent

Figure 1. The sequence diagram that specifies the monitoring process.

The first part of the monitoring activities is finalized when the Deployer asks and
retrieves from the Monitor the installation files of the data collectors that measure the
values of the desired infrastructure-layer metrics. The latter metrics are specified in the
monitoring rules.

Having acquired the necessary data collectors, that is, the components in charge of
collecting data concerning the monitored resources, the Deployer continues with their
installation on the cloud machines, which are specified in the current deployment plan.
The installation of the data collectors means that the Monitor enters into the second
part of the monitoring process. In this part, the data collectors send data to the Monitor.
These raw monitoring data are also acquired by the Deployer.

Based on the monitoring data, the Deployer evaluates the monitoring policies. If a
violation happens, then the Deployer tries to fix this by repairing the deployment plan.
If a repairing activity is not possible, then the Deployer sends a notification event to the

seacLouDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Maodeling Planning Cenfrolling

Monitor informing the latter that the replanning of the current application is required.
In this case, the Monitor informs about the replanning necessity the subscripted
components to the monitoring rule, which corresponds to violated policy. This process
will be described more in detail in Section 5.

Note that the methods invoked on the monitoring platform in the sequence diagram of
Figure 1, have been specified in the API of the SeaClouds monitoring platform in the
deliverable D4.5 [5].

4. Service Level Agreements assessment

The SLA Service enables the Service Level Agreements (SLA) management of business
oriented policies. The main responsibilities of the SLA service are: generating and storing
WS-Agreement templates and agreements, and assessing that all the agreements (SLA
guarantees) are respected by evaluating the business rules.

4.1 The two SLA levels

In SeaClouds, two levels of SLA have been identified (see Deliverable D2.4 [6], depending
of the involved parties of the agreement:

e Customer - Application Provider SLA (C-AP SLA)
e Application Provider - Cloud Provider SLA (AP-CP SLA)

The Customer-Application Provider level describes the service offered by the Application
Provider to their users. In this SLA level, there is one template per full application.

The guarantee terms in this Customer-Application Provider SLA should only watch
observable metrics by the customer. The purpose is to measure the Quality of
Experience (QoE) that the user perceives when he/she is using the application; in the
case of SeaClouds, these metrics are, for example, availability and response time. The
application provider have the possibility to add business values to the guarantee terms,
in order to describe the penalties that the application provider will incur if the term is
violated. A possible penalty is a discount in the monthly fee.

The Application Provider-Cloud Provider SLA level describes the service offered by the
cloud provider to the Application Provider. For example, the Amazon offers are
described in a set of templates, where the QoS assured and the corresponding penalties
if not fulfilled are stored. These templates are filled with the SLA offers advertised by
each cloud provider.

At this SLA level, there is one agreement for each cloud provider where the application
is deployed.

The application designer can enrich the agreements based on the cloud provider
templates with business values. Due to the fact that the cloud provider enforces its own
SLA, and therefore, SeaClouds can not impose any penalty to the cloud provider, the

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Cenfrolling

actions that make sense to be specified here are unilateral actions. A possible action of
this type is a migration of the modules in the affected cloud provider to another cloud
provider. In SeaClouds, this is achieved with a replanning trigger generated by the SLA
Service.

This SLA level performs a second assessment of the actual SLA enforced by the cloud
provider, although monitored by the Monitor component. In this way, the application
provider can check at the end of the billing cycle the QoS violations incurred by the cloud
provider, and verify that the corresponding discounts have been applied.

An external accounting/billing component may interact with the SLA Service in order to
obtain the business penalties that have occurred.

4.2 The relation with the Monitor

The SLA Service has a strong dependency with the Monitor: while the Monitor performs
the QoS Assessment, the SLA Service performs a QoB (Quality of Business) Assessment.
This QoB evaluation relies on the QoS evaluation: it uses the detected QoS violations to
assess the QoB constraints, playing a role in a high-level perspective.

We can consider the QoS evaluation as a short-term evaluation. This means that when
a condition is detected, an immediate action is expected. The action may be a repairing
or a replanning. If the action solves the issue, no more action is delivered.

On the other hand, QoB evaluation is a long-term analysis on metrics that impact on the
business of the application, and the business actions to apply in case of violation. For
example, if a violation of Response Time has been detected by the Monitor, the deployer
will try to add a virtual machine in order to solve the situation. But consider a QoB policy
defining that when the Response Time is violated 3 times in a hour, we are not interested
in that cloud provider anymore, and force a replanning, even when the issue is solved
by a repairing. QoB policies also can define penalizations (like discounts) to the provider
of the agreement if the QoB constraint is not fulfilled.

In order to perform its task, the SLA Service needs to be subscribed to the Monitor
component to receive the QoS violations observed in an agreement.

4.3 From the user requirements to the SLA

The user requirements are expressed in the TOSCA AAM. They will be translated into
WS-Agreement. Thus, the SLA Service is an implementation of the WS-Agreement
specification [7], which defines schemas for SLA Templates and SLA Agreements.
According to WS-Agreement:
e Atemplate is a document used by the service provider to advertise the types of
offers it is willing to accept.
e An agreement defines a dynamically-established and dynamically-managed
relationship between a provider and a customer, where the object of this
relationship is the delivery of a service by the provider to the customer.

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

A template or agreement contains functional and nonfunctional terms that describes
the service being delivered. In SeaClouds, we are mostly interested in non-functional
terms (Guarantee Terms), comprised of a Service Level Objective (SLO), defined as a
constraint on a metric, and a list of business values describing the result of not fulfilling
the objective.

The templates may be used as a base to create the actual agreements. Also, an
agreement may contain additional terms not found in a template. For example, in
SeaClouds, the agreements will contain Quality of Business (QoB) policies specified by
the application designer, but not specified in a cloud provider template.
A QoB rule is defined like this:
e A constraint over a metric provided by sensors (e.g. runtime < 2000ms). A non
fulfilled constraint is considered a QoS violation.
e The business action that takes place in the case of violation. This action may also
be defined inside a time window. For example, 3 violations of a constraint in a
day is penalized with a discount, and 5 violations in a day is penalized with a trial
of a service during one month.

Let us consider a simple web application deployed on Amazon. We want to assure a
Response Time of 500 ms to the user, but impose 200 ms to the cloud provider. If the
constraint is violated three times in an hour, we want to migrate. The corresponding SLA
agreements for this scenario are shown in Figure 2. For readability purposes, we
expressed the SLAs in YAML, although the formal specification is in WS-Agreement.

Application Provider - Cloud Provider
Context:
Provider: Amazon
Consumer: Seaclouds
Service: Compute
Resources: webapplication
Guarantee Terms:
-Availability: # from amazon template
Constraint: uptime_month > 0.995
-ResponseTime:
Constraint: response_time < 200
BusinessValues:
-(5, hour): migrate
User - Application Provider
Context:
Provider: Seaclouds
Consumer: user
Service: gold
Guarantee Terms:
-ResponseTime:
Constraint: response_time < 500

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Caontroling

BusinessValues:
-(5, hour): discount 5% hour
-(10, hour): discount 10% hour

Figure 2. SLAs in the Web Application in YAML

5. Dynamic orchestration and verification of the QoS and SLA

Once an application has been deployed, its management is accomplished by the
Deployer, and the Monitor is checking the status of possible violations, connected to the
SLA Service, as explained in Section 5.1. Whether a violation occurs, then a
reconfiguration process is required, which will be described in Section 5.2. Note an initial
description of this process is given in Deliverable 4.3 [8]. Revisions of this process may
be presented in the next deliverables of WP4, towards improving the performance of
the process, specifically in Deliverable D4.6 [9].

5.1 The Deployer as orchestrator of the Monitoring and SLA assesment

In order to understand how the deployer acts like an orchestrator of the monitoring
and SLA assessment, we present and describe the interaction flow of SeaClouds in this
section, following the sequence diagram presented in Figure 3. This figure represents
the necessary steps to carry out an application deployment from the initial stage
where the Application Developer (end-user) provides the Abstract Application Model
consisting of the Module Profile and the Topology representing the connections among
the modules of the cloud application to be deployed (other elements as the SLA
restrictions and policies are considered by SeaClouds), as described in detail in
Deliverable D3.1 [10], related to the design-time. And the corresponding information
to the deployment, monitoring and reconfiguration of the application, related to the
run-time, please, refer to Deliverables D4.1 [11] and D4.3 [8]. A brief explanation of this
process is given in the following.

seacLoubDs

AGILITY AFTET DEPLOYMENT

D4.4 Dynamic QoS verification and SLA management approach

Modeling Plonini Contralling
Dashboard / SeaClouds API
| I A
13 : ;
4 confirmed Deployable Agreen:em Business SLA info
1 fea generation
Abstract Deployable Application Model =
Application Application L5 SLA Service 2
i Deployer SLA Manager |i€— lerts
| . SLA Generator n
Planner Deployer Engine Live < | I
. Model o Subscription 7
R
Matchmaking Cloud adapters ity to rules
10 | |
| Optimizer | - v Monitor
- Replanning 92
‘ T triggers - -
: 5 o Data || Monitoring
cloud Monitorlng o Analyzer Manager
Providers request setup
8
¢' [App Deployment and
% Data Collector installation
Discoverer
Application Application g Monitoring
~ module module

event

Coi ector A—. Coiector .—]

Figure 3. Interaction flow between the SeaClouds components

After the Abstract Application Model (AAM) has been specified (step 1 in Figure 3),
SeaClouds kicks off the Discovering and Planning stage. Once the cloud providers have
been discovered (step 2), the Planner acts with two subprocesses: Matchmaking and
Optimizer (described in D3.2 [10]).

The Planner generates a Deployable Application Model (DAM), which specifies the
concrete cloud services used to distribute the application (step 3), using an internal and
intermediate model, the Abstract Deployment Plan (ADP), between the AAM and the
DAM.

Then is the time in which the Deployer component acts, as detailed in Deliverable D4.1
[11]. The Deployer executes the confirmed DAM (step 4), while the monitoring is
configured, by means of the Deployer, with the corresponding monitoring rules taken
from the user requirements (step 5) and the SLA agreements are initialized with the user
inputs (step 6). Also, the SLA service is subscribed to rules or alerts in connection with
the Monitor, enforcing the policies of the agreements (step 7). The Deployer also allows
the deployment of the application’s modules over heterogeneous laaS and PaaS (step 8,
which can be executed together with step 5), and a Live Application Model, which tracks
the dynamic evolution of the deployment and management of the application modules
themselves.

Once the application is deployed, the Deployer manages it and instruments the Monitor
and SLA assessment. In particular, the Deployer installs Data Collectors in the cloud
machine(s), in which the application modules have been deployed. A Data Collector
component gathers raw monitoring data and pushes them to the Monitor (step 9). The
latter component interacts with the Deployer and the SLA service to jointly manage
violations of properties, QoS and QoB. A Live Application Model maintains a track of the
dynamic evolution of the deployment and management of the application

seacLoubDs

ACEISASISr DEFLEmanT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Caontroling

modules. Whether a violation issue occurs, and it can be fixed without replanning, then
the Monitor and the Deployer interact to repair the issue (step 10). Otherwise, then the
Monitor interacts with the Planner (steps 11, 12). In this case, the Planner generates a
new plan, a replanning action, which will be executed by the Deployer. Business SLA info
is exposed by means of the Dashboard (step 13).

5.2 From monitoring results to repairing and replanning

Monitoring and managing applications is an arduous task. An application management
solution should consider multiple runtime metrics to understand effectively and possibly
efficiently the status of the application in order to manage it correctly, using the
monitoring results in the corresponding reconfiguration action.

Depending on the step of the management process, the monitoring results include
different kind of information.

e During the evaluation of the management policies by the Deployer, the
monitoring results include raw monitoring data, used by the Deployer for
performing this evaluation. The monitoring data are collected based on the
metrics specified in the monitoring rules.

e In case a reconfiguration plan (esp., replanning) is decided, the monitoring
results include the sending of monitoring events to the external SeaClouds
components (Planner, Dashboard, and SLA Service) about the necessity of
replanning. This kind of monitoring result is realized by the actions, also specified
in the monitoring rules.

In SeaClouds, “the source of truth” is the Deployable Application Model (DAM), the
concrete plan that is executed by the Deployer Engine. The Deployer Engine, in fact,
executes DAM concrete plans produced by the planning stage. In the planning stage,
SeaClouds assembles a plan that contains the modules of the application and the
topology, the concrete services that execute the modules, and the policies to fulfill user
requirements, like SLA or cost-constraints. Just to give a very basic example, a SeaClouds
user can ask to deploy a 3-tier web application in EU ensuring that its response time will
always be under 300 ms but without spending more than x euros/month. This (simple)
example shows the complexity of managing applications: those are reasonable
constraints, but the SeaClouds platform will have to translate this high-level constraints
into a DAM concrete plan that the platform can run and manage. As already proposed
in Deliverable D4.3 Design of the runtime reconfiguration process [8], after an alert is
triggered, as monitoring result, we differentiate two reconfiguration types: Repairing
and replanning.

Repairing occurs when the violation can be fixed without the need of generating a new
plan, because it was previously considered by the user or even it is dynamically ordered
by the user. In this strategy, the Deployer and the Monitor is directly connected to check
the actions which could be fixed.

seacLoubDs

ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planni Controlling

Repairing reconfiguration is based on the management of deployment resources, which
allows SeaClouds to adjust the deployed application according to the runtime
information and related monitoring rules (previously defined by the user, or even
requested at runtime), using the Deployer Engine effectors. Then, it involves dynamic
changes or fixed fails of some components or the entire application. The applicable
scenarios mainly include replacing/restarting a failed component, scaling to meet the
demand, and applying a follow-the-sun policy.

Replanning reconfiguration will try to handle the cases that cannot be solved by
repairing. Replanning is a more complex process than repairing since it needs to involve
the Planner to generate a new plan. It needs to modify the plan specified in the DAM,
that describes the distribution of the application modules, and do a redeploying. Thus,
replanning cannot be completed independently by only the Deployer Engine, but also
needs the work of planner to update the DAM which may contain new distribution of
the application modules. Replanning reconfiguration will be more complicated also
because migration may happen in this process.

A main reason of triggering replanning is a QoS violation. In this case, the Monitor
forwards the event of such a violation to interested components, subscribed to the
Monitor. Another reason of replanning is a QoB violation. In particular, the SLA Service
component is listening for violations that impact on the business of an application,
performing a long term QoB analysis. If a QoB policy states that a migration should occur
if violated, then the SLA component triggers a replannification alert to the Planner.

6. Conclusion

This document addressed the dynamic QoS verification and SLA management approach
of SeaClouds. First we have defined a set of the metrics used for the representation of
runtime QoS properties of the services, where each metric is also defined whether
applying to a module-restricted scope or to the application seen as a whole.

Then, we have formally specified these metrics in monitoring rules, which also include
the entities to monitor, and the actions to perform if a violation occurs. As described,
these rules are used to initialize the SeaClouds monitor, which measures the different
properties by means of different data collectors. We have also described the monitoring
process in terms of the interactions between the core components of the SeaClouds
platform.

Based on the monitoring data, we have shown how SeaClouds evaluates the monitoring
policies, and how, if a violation occurs, SeaClouds tries to fix it by repairing the current
deployment plan, or, replanning a new deployment plan.

Finally, we have also described how SeaClouds perform Quality of Business (QoB)
analysis of the SLAs.

seacLoubDs _ o
ACLIISNSIEE DERLCEMERT D4.4 Dynamic QoS verification and SLA management approach

Medeling Planning Cenfrolling

As future work, we plan to consolidate the design decisions of the aforementioned
activities, implement them in the prototype and validate the approach through the case
studies.

References

1. SeaClouds Project. Deliverable D6.1. Case study extended description (SeaClouds
Consortium), March 2015.

2. ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models,
2010.

3. ModaClouds Project. MOdel-Driven Approach for design and execution of
applications on multiple Clouds, 2015. https://github.com/deib-polimi/modaclouds-

monitoring-manager/wiki.

4. ModaClouds Project. User’s Manual, 2015. https://github.com/deib-
polimi/modaclouds-gos-models/blob/master/doc/user-manual.md#actions.

5. SeaClouds Project. Deliverable D4.5. Unified dashboard and revision of Cloud API
(SeaClouds Consortium), March 2015.

6. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds
Consortium), February 2015.

7. Open Grid Forum, Web Services Agreement Specification (WS-Agreement), 2006.
https://www.ggf.org/Public Comment Docs/Documents/Oct-2006/WS-
AgreementSpecificationDraftFinal sp tn jpver v2.pdf

8. SeaClouds Project. Deliverable D4.3. Design of the run-time reconfiguration process
(SeaClouds Consortium), February 2015.

9. SeaClouds Project. Deliverable 4.6. Prototype and detailed documentation of the
SeaClouds run-time environment (SeaClouds Consortium), June 2015 (to be published).

10. SeaClouds Project. Deliverable D3.2. Discovery, Design and Orchestration
Functionalities (SeaClouds Consortium), March 2015.

11. SeaClouds Project. Deliverable D4.1. Definition of the multi-deployment and
monitoring strategies (SeaClouds Consortium), October 2014.

