

SeaClouds Project

D4.5 Unified dashboard and revision

of Cloud API

Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based
applications

Call identifier FP7-ICT-2012-10

Grant agreement no. Collaborative Project
Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP4. SeaClouds run-time environment
Deliverable code D4.5
Deliverable Title Unified dashboard and revision of Cloud API
Nature Report
Dissemination Level Public
Due Date: M18
Submission Date: March 3rd , 2015
Version: 1.0
Status Final
Author(s): Dionysis Athanasopoulos (POLIMI), Miguel Barrientos (UMA), Jose

Carrasco (UMA), Javier Cubo (UMA), Elisabetta Di Nitto (POLIMI),
Adrián Nieto (UMA), Marc Oriol (UPI), Diego Pérez (POLIMI), Román
Sosa (ATOS)

Reviewer(s) Dionysis Athanasopoulos (POLIMI), Andrea Turli (Cloudsoft), Javier
Cubo (UMA)

D4.5 Unified Dashboard and revision of Cloud API 2

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors,
reviewers

0.1 08/03/15 First ToC
Adrián Nieto, Jose
Carrasco

0.2 09/03/15 Second ToC and assignment of
sections

Javier Cubo, Miguel
Barrientos, Jose
Carrasco

0.3 19/03/15 First contributions Adrián Nieto, Javier
Cubo, Miguel
Barrientos, Jose
Carrasco, Marc Oriol,
Diego Pérez, Román
Sosa, Dionysis
Athanasopoulos

0.4 20/03/15 Internal revision to check missing
contributions

Adrián Nieto

0.5 26/03/15 New contributions and last
checkings

Adrián Nieto, Jose
Carrasco, Miguel
Barrientos, Román Sosa,
Javier Cubo, Leonardo
Bartoloni, Simone
Zenzaro, Diego Pérez,
Marc Oriol

0.6 27/03/15 Ready to be reviewed Adrián Nieto, Jose
Carrasco, Miguel
Barrientos, Javier Cubo,
Marc Oriol

0.7 30/03/15 Revised version Andrea Turli, Román
Sosa, Javier Cubo

1.0 31/03/15 Final version Adrián Nieto, Miguel
Barrientos

D4.5 Unified Dashboard and revision of Cloud API 3

Table of Contents

Executive Summary .. 6

1. Introduction ... 7

1.1. Structure of this document ... 7

1.2. Glossary of Acronyms .. 7

2. SeaClouds API ... 8

2.1. Technical overview .. 8

2.2. Discoverer API ... 9

2.2.1. Terminology ... 9

2.2.2. Interface ... 10

2.3. Planner API .. 11

2.3.1. Terminology ... 11

2.3.2. Interface ... 12

2.3.3. Matchmaker ... 14

2.3.4. Optimizer .. 14

2.4. Deployer API .. 16

2.4.1. Terminology ... 16

2.4.2. Interface ... 17

2.5. Monitor API ... 19

2.5.1. Terminology ... 20

2.5.2. Interface ... 20

2.6. SLA Service API .. 22

2.6.1. Terminology ... 22

2.6.2. Interface ... 23

3. SeaClouds Dashboard... 27

3.1. Technical overview .. 27

3.2. Design and user experience .. 27

3.2.1. Main View .. 28

3.2.2. Status View ... 29

3.2.3. SeaClouds Assistants .. 29

3.2.4. Monitor section .. 36

3.2.5. SLA section ... 37

3.3. Nuro Storyboard as use example of the API and Dashboard 39

4. Conclusions .. 39

5. References .. 40

D4.5 Unified Dashboard and revision of Cloud API 4

Table of Figures
Figure 1. SeaClouds unified API interaction ... 9

Figure 2. Dashboard interaction diagram .. 27

Figure 3. SeaClouds Main View .. 28

Figure 4. SeaClouds status view ... 29

Figure 5. Add a new application wizard, step 1 ... 30

Figure 6. Design an application topology, step 2 ... 31

Figure 7. Configuring an application module, step 2 ... 31

Figure 8. Designing the application topology, step 2. Sequence diagram 32

Figure 9. Optimized plan selection, step 3 ... 32

Figure 10. Configuration summary, step 4 ... 33

Figure 11. Generation and deployment of a DAM. Sequence diagram 33

Figure 12. Selecting the application which will be removed, step 1 34

Figure 13. Removal operation confirmation, step 2 .. 35

Figure 14. Remove process summary, step 3 .. 35

Figure 15. Remove application wizard. Sequence diagram ... 36

Figure 16. Application monitor .. 36

Figure 17. Dashboard application monitoring process .. 37

Figure 18. SLA usage and status summarize .. 38

Figure 19. Interaction between the Dashboard and the SLA API 38

D4.5 Unified Dashboard and revision of Cloud API 5

Table of Tables

Table 1. Acronyms .. 8

Table 2. API method definition template... 8

D4.5 Unified Dashboard and revision of Cloud API 6

Executive Summary

This document presents a revisited version of the SeaClouds Unified Application
Programming Interface (API) and the Dashboard, based on the exposed work on the
previous Deliverable D4.2. It describes the common language that every SeaClouds
component will use to interact between each other. Also, it exposes the advances
on the Dashboard design, where we simplify the user interaction by the usage of
SeaClouds Assistants, which will guide the user during the usage of the Dashboard.
Finally, it includes an example based on the Nuro Storyboard that we introduced in
Deliverable D2.4 in order to show a real example of usage of the Dashboard and
SeaClouds API.

D4.5 Unified Dashboard and revision of Cloud API 7

1. Introduction

This document describes the design of the unified SeaClouds API, which allows to
develop and use the different SeaClouds components in an isolate way in order to
facilitate the reusability and modularity. Thus, the API provides the necessary
mechanisms to expose and use the functionalities of each component.

Therefore, we describe the expected Dashboard functionalities providing a usable
mockup, related to the high-fidelity prototype described in the Deliverable D5.2.2
Final Design of the User Interface [1] . This tool works as a SeaClouds API client and
it implements an environment to use the SeaClouds functionalities using all the
operations performed by the SeaClouds components that are provided by the API.
The dashboard inherits the life-cycle to deploy and manage the applications on the
target locations using the SeaClouds platform.

1.1. Structure of this document

The structure of this document is the following.

Section 2 provides a specification of the technology aspect of the SeaClouds API and
an exhaustive description of the performed operations by each SeaClouds
component.

In Section 3, we present the SeaClouds Dashboard starting, again, with the technical
details and requirements. In order to describe the design and user experience we
provide a functional mockup of the user interface.

Section 4 briefly illustrates the platform functionalities using the Nuro Use Case to
show how the dashboard use the SeaClouds components API and how they interact
with each other.

Finally, Section 5 presents some conclusions for this document.

1.2. Glossary of Acronyms

Here we list the different acronyms which will be used in this document.
Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

GUI Graphical User Interface

API Application Programming Interface

APP Application

D4.5 Unified Dashboard and revision of Cloud API 8

AAM Abstract Application Model

DAM Deployable Application Model

ADP Abstract Deployment Plan

RDF Resource Description Framework

URI Uniform Resource Identifier

MVC Model View Controller

YAML YAML Ain’t Markup Language

XML eXtensible Markup Language

REST Representation state transfer

Table 1. Acronyms.

2. SeaClouds API

This section describes the different parts that compose the SeaClouds unified API,
by defining the methods that will be available from each of the different SeaClouds
components. The goal of this section is to give a common global interface for the
SeaClouds dashboard to execute the primary objectives of the platform, such as
designing, managing and re-configuring applications.

In Table 2, we present the template used in this document to describe the
SeaClouds API corresponding to each component of the platform: Discoverer,
Planner, Deployer, Monitor and SLA Service.

Basically, we are considering a Method identification, and provide a Description of
the method. Also, the Parameters of the method are listed, as well as the Response
of the method.

ID MethodID (e.g: getApplications)

Description (e.g: returns a list of applications)

Parameters ● (Type) Param1, a description of Param1
● (Type) Param2, a description of Param1

Response ● (Type) MethodResponse, a description of the response

Table 2. API method definition template.

2.1. Technical overview

From a technical point of view, SeaClouds unified API will be accessible from a
single endpoint, and it will be internally organized in the same way that SeaClouds
components are designed. In other words, each SeaClouds component (Discoverer,
Planner - including the Matchmaker and Optimizer processes -, Deployer, Monitor,
SLA Service) will implement its own REST API, all being gathered under the same
REST hierarchy (Figure 1).

D4.5 Unified Dashboard and revision of Cloud API 9

From a developer point of view, the usage of the API is homogeneous and
transparent to the component implementation as the developer only has to
concern about the external details of the SeaClouds Platform, which are defined in
this deliverable.

Figure 1. SeaClouds unified API interaction.

2.2. Discoverer API

The Discoverer is composed of several pluggable modules and a core Information
system. The core information system stores the different cloud offerings and their
properties in TOSCA YAML standard. This information is obtained by the different
modules, which follow different strategies and have different capabilities according
to the strategy.

2.2.1. Terminology

● TOSCA document: a document in TOSCA format - either as a string or file or
as a parsed Java object representation.

● CloudOfferingDocument: a TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in Deliverable D3.2 [2].

● CloudOfferingID: the name of a TOSCA node type referring to a cloud
offering, expressed as a string.

● CloudOfferingEnumerator: the head of a linked list of
CloudOfferingDocument representing the offers in the database. It has two
methods: get() to retrieve the CloudOfferingDocument currently being pointed and
next() to get a CloudOfferingEnumerator pointing to the next element in the
enumeration. next() will return NULL if the element being pointed is the last
element of the enumeration.

https://drive.draw.io/#G0Bw9KJPN8k2gldTlJSmpMUlRlZ0E

D4.5 Unified Dashboard and revision of Cloud API 10

2.2.2. Interface

The Discoverer provides the following API:

- Add/remove cloud offering: adds/removes a cloud offering of the core
information system (used by the modules of the discoverer)

- Update cloud offering properties: updates the properties of the cloud offering
(used by the modules of discoverer)

- Enumerate cloud offerings: allows iteration of the cloud offerings and their
properties from the information system. (used by the matchmaker)

ID update

Description Adds or replace a list of cloud offering to the discoverer database.
Used by discoverer modules.

Parameters ● (CloudOfferingDocument) cloudOfferings, a set of cloud
offerings to be included into the database.

● (Boolean) overwrite, if true cloud offerings with the same
name will be updated, otherwise the update will fail if an offering
with the same name is specified

Response ● (Boolean) Success, true if the database was updated
successfully.

ID getDefinition

Description Get the definition of a cloud offering given its identifier.

Parameters ● (CloudOfferingId) cloudOfferingId, the unique id of the
cloud offering whose definition is to be.

Response ● (CloudOfferingDocument) cloudOffering, a TOSCA
document containing the node type definition corresponding to
the required cloud offering ID. If no cloud offering exists for the
given ID NULL is returned .

ID removeOffer

Description Removes a cloud offering from the database .

Parameters ● (CloudOfferingId) cloudOfferingId, the unique id of
the cloud offering to be removed.

Response ● (Boolean) Success, true if the cloud offering was
found and correctly removed.

D4.5 Unified Dashboard and revision of Cloud API 11

ID enumerateOffers

Description Get an enumerator pointing to the first cloud offering. Used by the
matchmaker to enumerate all the available offerings and fetch
them one at a time.

Parameters

Response ● (CloudOfferingEnumerator) enumerator, the head of a
linked list of the offers in the database.

The different modules of the Discoverer provide different APIs depending on their
nature. Examples of modules of the discoverer are:

- Brokering crawlers (e.g. CloudHarmony, PaaSify): provides an API to start the
interaction with CloudHarmony, PaaSify.

- Service Provider’s advertisements: provides an API for the Service Provider’s
to advertise directly their services to SeaClouds.

- Monitored information module: provides an API to be notified of QoS
information of the cloud offerings

- Manual input module: provides an API to manually include cloud offering

2.3. Planner API

In this section we describe the available methods that are offered from the Planner
API for example obtaining the best plan deployment for an application or plan a re-
planification.

2.3.1. Terminology

● TOSCA document: a document in TOSCA format - either as a string or file or
as a parsed Java object representation.

● AAM: a TOSCA document containing the Abstract Application Model as
described in other deliverables [2*].

● ADP: a TOSCA document containing the Abstract Deployment Model, which
is similar to the Abstract Application Model but it has cloud offerings associated with
executable modules [2*].

● DAM: a TOSCA document containing the Deployment Application Model,
which is similar to the Abstract Deployment Plan but it is augmented with the
required information to perform the deployment.

● LiveModel: a TOSCA document containing topology, deployment, and
runtime information of a running application.

D4.5 Unified Dashboard and revision of Cloud API 12

2.3.2. Interface

ID plan

Description Implements the process of requiring application planning. Given
the Abstract Application Model as TOSCA YAML input, the planner
performs matchmaking and optimization by invoking the methods
match and optimize respectively. The output of this process is a
set of optimized deployment proposal for the given application.

Parameters ● (AAM) model, the Abstract Application Model for which
planning is required

Response ● (Set<ADP>) deploymentModels, a set of optimized
deployment proposal models

ID match

Description The planner offers to the user the option of performing
matchmaking (i.e only the first step of the planning process). This
method invokes the internal component Matchmaker, which
implements the functionality.

Parameters ● (AAM) model, the Abstract Application Model in TOSCA
YAML for which matchmaking is required

Response ● (Map<ModuleName, CloudOfferingDocument>)
matchingOffers, a map associating a set of possible cloud offerings
to e each module in the input Abstract Application Model.

ID optimize

Description The planner offers to the user the option of performing
optimization (i.e. only the second step of the planning process).
This method, invokes the internal component Optimizer, which
implements the functionality.

Parameters ● (AAM) model, Abstract Application Model in TOSCA YAML
that contains the information of application modules, application
topology, QoS requirements, QoS properties and names of cloud
services that can be used for each module in an AAM

● (Map<ModuleName, CloudOfferingDocument>)
suitableCloudOffers, a map from the Abstract Application Model
modules to the set of matching cloud offers containing the
information retrieved by the Discoverer module of suitable cloud
services and information regarding communication capabilities of

D4.5 Unified Dashboard and revision of Cloud API 13

clouds

Response ● (Set<ADP>) candidatePartialPlans, the output is an set of
candidate partial plans where, in each plan, each module is
associated to one and only one cloud service. The internal
optimization problem aims at satisfying the performance and/or
availability requirements while minimizing the expected expenses
on using computing cloud resources assuming that they are used in
a “pay-as-you-go” settings

ID generateDAM

Description Generates the Deployment Application Model from the Abstract
Deployment Plan. To do so, it interacts with the user to obtain
additional information regarding credentials,policies, etc. that is
required to perform the deployment.

Parameters ● (ADP) deploymentModel, the Abstract Deployment Plan in
TOSCA YAML.

Response ● (DAM) deploymentModel, The Deployable Application
Model in TOSCA YAML with the required information to perform
the deployment.

ID replan

Description Implements the replanning phase for a running application. The
Planner takes the Abstract Application Model and the current Live
Model for the user application. The Live Model provides also the
information about replanning cause. The output of this process is
a set of optimized deployment proposal for the given application.

Parameters ● (AAM) abstractModel, the Abstract Application Model in
TOSCA YAML for which replanning is required

● (LiveModel) liveModel, the current Live Model containing
also the informations about violations and replanning causes

Response ● (Set<ADP>) deploymentProposals, a set of optimized
deployment proposal models

D4.5 Unified Dashboard and revision of Cloud API 14

2.3.3. Matchmaker

The Matchmaker iterates the list of available cloud offerings from the Discoverer
and selects those which are suitable to implement the modules of the application
given the requisites from the user.

2.3.3.1. Terminology

● TOSCA document: a document in TOSCA format - either as a string or file or
as a parsed Java object representation

● AAM: a TOSCA document containing the Abstract Application Model as
described in D3.2

● Module: the smallest deployable entity of the application, described in TOSCA
by a Node Template (see D3.2)

● ModuleName: the unique name of the node template used to specify a
module in the AAM

● CloudOfferingDocument: a TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in D3.2

2.3.3.2. Interface

ID match

Description Implements the matching process. Given the Abstract Application
Model for the application, each module is matched with available
cloud offers according to its functional properties. The mapping
between modules and matching offers is returned.

Parameters ● (AAM) model, the Abstract Application Model in TOSCA
YAML for which matchmaking is required

Response ● (Map<ModuleName, CloudOfferingDocument>)
matchingOffers, a map associating a set of possible cloud offerings
to each module in the input Abstract Application Model.

2.3.4. Optimizer

The Optimizer module within the planner is mainly composed of an optimization
problem solving[1] component. It provides interfaces for two different problems: a)
deciding the cloud services to use in the initial deployment (called optimize) and b)
deciding the cloud services to use in subsequent deployments when the application
has to migrate, at least partially, from its original deployment (called reoptimize).

D4.5 Unified Dashboard and revision of Cloud API 15

2.3.4.1. Terminology

● TOSCA document: a document in TOSCA format - either as a string or file or
as a parsed Java object representation.

● AAM: a TOSCA document containing the Abstract Application Model as
described in other deliverables.

● Module: the smallest deployable entity of the application, described in TOSCA
by a Node Template [2*].

● ModuleName: the unique name of the node template used to specify a
module in the AAM.

● CloudOfferingDocument: a TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in Deliverable 3.2 [2*]

● ADP: a TOSCA document containing the Abstract Deployment Model, which
is similar to the Abstract Application Model but it has cloud offerings associated with
executable modules [2*]

● LiveModel: a TOSCA document containing topology, deployment, and
runtime information of a running application.

2.3.4.2. Interface

ID optimize

Description It produces a set of candidate partial plans where, in each plan,
each module is associated to one and only one cloud service.

Parameters ● (AAM) model, Abstract Application Model in TOSCA YAML
that contains the information of application modules, application
topology, QoS requirements, QoS properties and names of cloud
services that can be used for each module in an AAM.

● (Map<ModuleName, CloudOfferingDocument>)
suitableCloudOffers , a map from the Abstract Application Model
modules to the set of matching cloud offers containing the
information retrieved by the Discoverer module of suitable cloud
services and information regarding communication capabilities of
clouds.

Response ● (Set<ADP>) candidatePartialPlans, the output is an set of
candidate partial plans where, in each plan, each module is
associated to one and only one cloud service. The internal
optimization problem aims at satisfying the performance and/or
availability requirements while minimizing the expected expenses
on using computing cloud resources assuming that they are used in
a “pay-as-you-go” settings.

ID reOptimize

D4.5 Unified Dashboard and revision of Cloud API 16

Description It produces a set of candidate partial reconfiguration plans where
each plan specifies the modules to migrate and their target cloud
service

Parameters ● (AAM) model, Abstract Application Model in TOSCA YAML
that contains the information of application modules, application
topology, QoS requirements, QoS properties and names of cloud
services that can be used for each module in an AAM.

● (Map<ModuleName, CloudOfferingDocument>)
suitableCloudOffers , a map from the Abstract Application Model
modules to the set of matching cloud offers containing the
information retrieved by the Discoverer module of suitable cloud
services and information regarding communication capabilities of
clouds.

● (ADP) oldModel, deployment model that was used to
deploy the application before replanning triggered.

● (LiveModel) liveModel, model containing real time
information about the application currently deployed, including the
violation which triggered the replanning.

Response ● (Set<ADP>) candidatePartialReconfigurationPlans, the
response is a set of candidate partial reconfiguration plans, where,
in each of these candidates it is specified the information for
changing from the current DAM that is no longer valid to a
computed alternative deployment that overcomes the current
DAM problems. The internal optimization problem aims at
satisfying the performance and/or availability requirements while
minimizing both the expected expenses on using computing cloud
resources assuming that they are used in a “pay-as-you-go”
settings and the application modules that need to be migrated
from their current deployment.

2.4. Deployer API

The Deployer API provides the resources to deploy and manage application
modules. It contains the methods for managing the application deployments.

2.4.1. Terminology

● Application: represents an application which was deployed by the Deployer.
○ ID: unique identifier.
○ Name: given name for the application.
○ Status: current lifecycle status of the application (“Starting”,

“Running”, “On fire”, “Stopped”, etc.)

D4.5 Unified Dashboard and revision of Cloud API 17

○ ConfigParameters: list of configured application parameters.
○ Policies: list of attached policies.
○ Modules: modules that compose the application.
○ Effectors: operations that can be invoked on application.

● Module: represents each of the modules that compose an application.
○ ID: unique identifier.
○ Name: given name for the module.
○ Status: current lifecycle status of the entity (“Starting”, “Running”, “On

fire”, “Stopped”, etc.).
○ ConfigParameters: list of parameters configured on the module. This

includes environment variables, endpoint description, domain, ports, etc.
○ Policies: list of attached policies.
○ Effectors: operations that can be invoked on module.

● Effector: represents the possible actions that can be performed on each
application module.

○ Action: the action that will be performed.
○ Description: a description of the action.

● Location: represents the cloud provider where the managed application
modules will be deployed.

○ Provider.
○ Region.

2.4.2. Interface

ID getApplication

Description Returns the details of an existing application (modules, status,
location, etc).

Parameters ● (String) applicationId: ID of the application.

Response ● (Application) application: found application

ID getModule

Description Returns the details of an existing application module (status,
location, policies, configuration, etc).

Parameters ● (String) applicationId: ID of the application.
● (String) moduleId: ID of the module.

Response ● (Module) module: application module details.

ID getApplications

D4.5 Unified Dashboard and revision of Cloud API 18

Description Returns the list of deployed applications.

Parameters

Response ● (Application[]) applications: list of available deployed
applications

ID createApplication

Description Creates and deploys a new application, given a Deployable
Application Model.

Parameters ● (String) deployableApplicationModel: application
description

Response ● (String) applicationId: ID of the created application

ID deleteApplication

Description Removes a running application, releasing all cloud resources
associated to it.

Parameters ● (String) applicationId: ID of the application to be removed.

Response

ID getEffectors

Description Returns the list of available effectors for an Application Module.

Parameters ● (String) applicationId: ID of the application.
● (String) moduleId: ID of the module where to retrieve the

effectors.

Response ● (Effector[]) effectors: List of effectors available on the
module.

ID callEffector

Description Triggers an effector action associated to a module.

Parameters ● (String) applicationId: ID of the application.
● (String) moduleId: ID of the module that contains the target

effector.
● (String) effector: ID / action to be triggered
● (String[]) effectorParameterList: additional parameters

D4.5 Unified Dashboard and revision of Cloud API 19

required by the effector.

Response ● (Application) application: found application

ID getSupportedLocations

Description Retrieves the available locations in the deployer.

Parameters

Response ● (Location[]) locations: list of currently supported locations.

ID getAvailablePolicies

Description Retrieves the available policies that can be attached to certain
kind of module.

Parameters ● (String) moduleType: module type.

Response ● (Location[]) locations: list of currently supported locations.

2.5. Monitor API

SeaClouds monitoring platform encapsulates and exploits the functionality offered
by MODAClouds monitoring platform [4]. The latter platform uses four core
components, the Monitoring Manager, the Knowledge Base, the Data Analyzer, and
one or more Data Collectors, as specified below:

● The Monitoring Manager is the coordinator of MODAClouds platform.
● The Knowledge Base contains an ontology and a permanent RDF database.

The ontology is a formal specification of the common abstractions needed to
represent and monitor cloud applications and to describe the mutual relationships
among them. The permanent RDF database contains information about the running
system and the current monitoring platform configuration.

● A Data Collector is responsible for collecting monitoring data from cloud
resources and applications and to associate semantic information to the data.

● The Data Analyzer processes monitoring data coming from data collectors and
tries to detect on-the-fly patterns that emerge directly from the data, without the
need of major transformations of the data itself.

By using the internal components, SeaClouds monitoring platform offers to the
external SeaClouds components (Deployer, Planner, SLA Service, and Dashboard)
the following overall functionality: it collects raw monitoring data, it offers these
data to Observers interested on them (i.e.: the Deployer), and it sends events to the

D4.5 Unified Dashboard and revision of Cloud API 20

Planner, the SLA service, and the Dashboard in case a set of monitoring rules are
violated. The notion of a monitoring rule has been specified in previous deliverables
[5].

To realize this functionality, the external SeaClouds components interact with the
internal components of the monitoring platform. For instance, the Deployer
initiates all the internal components of the monitoring platform, while the Planner,
the SLA service, and the Dashboard subscribe to the Monitoring Manager in order
to retrieve events.

To reduce the coupling between the external and the internal components of the
monitoring platform, we adopt the mediator design pattern. Based on this pattern,
the interaction between components is encapsulated with a mediator component,
which we call here "controller". In this way, components no longer interact directly
with each other, but instead interact through the controller. In other words, the
controller defines the API for the interaction between the external and the internal
components of the monitoring platform.

2.5.1. Terminology

● Endpoint: URIs of (internal and external) servers with which the Monitor
interact.

● MetricName: the name of a monitoring metric, which is commonly used
among SeaClouds components (e.g., Planner, Deployer), and corresponds to the kind
of the data that will be measured by the Monitor.

● DataCollector: the executable file (e.g., .jar) of a data collector.
● DescrPlan: the low-level representation (e.g., String) of the deployment plan

of an application.
● Rule: the low-level representation (e.g., String) of a monitoring rule, according

to the XML schema [5].
● mID: the identifier of a monitoring rule, as specified in the XML schema [5].
● Callback: URI of SeaClouds component that is interested to retrieve raw

monitoring data.
● ReplanningEvent: the low-level representation (e.g., String) of the

information, needed by a SeaClouds component, in order to be informed about
violations of a monitoring rule that lead to a replanning.

2.5.2. Interface

The controller API includes the methods of the following tables, which prototype
the core functionalities offered by SeaClouds monitoring platform.

ID initialize

Description It provides URIs of MODAClouds servers and SeaClouds

D4.5 Unified Dashboard and revision of Cloud API 21

components with which SeaClouds Monitor interact.

Parameters ● (URI[]) endPoints, a set of endpoint addresses.

Response

ID getAvailableMetrics

Description It returns the names of the available metrics, for which data
collectors are available in the SeaClouds monitoring platform.

Parameters

Response ● (String[]) metricNames, a set of available metric names.

ID getDataCollectors

Description It accepts as input a set of metrics and returns the data collectors
that measure the values of these metrics.

Parameters ● (String[]) metricNames, a set of metric names.

Response ● (File[]) dataCollectors, a set of executable files of data
collectors.

ID installDeploymentPlan

Description It accepts as input the description of the deployment plan for an
application and uploads this plan to the Monitoring Manager.

Parameters ● (String) descrPlan, the description of the deployment plan
of an application.

Response

ID installMonitoringRules

Description It accepts as input the monitoring rules for an application, uploads
these rules to the Monitoring Manager, and activates them.

Parameters ● (String) rules, the set of the input monitoring rules.

Response

ID uninstallMonitoringRule

D4.5 Unified Dashboard and revision of Cloud API 22

Description It accepts as input the id of a previously installed monitoring rule
and deletes the corresponding rule from the platform.

Parameters ● (Integer) mID, the identifier of a monitoring rule.

Response

ID addObserver

Description It accepts as input the name of a metric and a callback URI and
sends the collected monitoring data for the input metric to the
callback URI.

Parameters ● (String) metricName, the name of a metric.
● (URI) callback, the endpoint address of component that is

interested in receiving raw monitoring data.

Response

ID sendReplanningEvent

Description It accepts as input a re-planning event,produced by the Deployer,
and forwards it to SeaClouds components (Planner, SLA Service,
and Dashboard) that have subscribed to the violated monitoring
rule.

Parameters ● (String) replanningEvent, the information, needed by a
SeaClouds component, in order to be informed about violations of
a monitoring rule that lead to a replanning.

Response

2.6. SLA Service API

The SLA Service API provides the methods to manage templates and agreements of
the two SLA levels identified in SeaClouds.

2.6.1. Terminology

● Agreement: document that describes the delivered service, the involved
parties, and the non-functional properties that the service must fulfill.

● AgreementId: Unique identifier of the agreement.
● Template: document that describes a provider offer. Actual agreements may

be based on templates.

D4.5 Unified Dashboard and revision of Cloud API 23

● TemplateId: Unique identifier of the template.
● Guarantee term: Term that express service guarantees in an agreement,

define how guarantees are assessed and which compensation methods apply in case
of meeting or violating the service guarantees.

● ServiceId: Identifier of a service being delivered. In the case of Customer -
Application Provider level, it corresponds to the application id; otherwise, it
corresponds to an identifier of the actual service offered by the cloud provider.

● Resource: Identifier of the entity using a service. Used in the Application
Provider - Cloud Provider level, corresponding to the moduleId(s) being hosted.

● Enforcement: Process that evaluate the guarantee terms are being fulfilled.
● QoB (Quality of Business): express a constraint over business-related metrics

and the penalties and recovery actions that are applied in case this constraint is
violated.

2.6.2. Interface

ID getAgreement

Description Retrieves the agreement identified by its id.

Parameters ● (AgreementId) Id, WS-Agreement Id of agreement.

Response ● (Agreement) WS-Agreement representation of agreement.

ID getAgreements

Description Retrieves all the agreements that match the filter.

Parameters ● (ProviderId) provider, Id of a Provider.
● (ServiceId) service, Id of a Service.
● (ResourceId) resourceId, Id of a Resource.
● (ConsumerId) consumer, Id of a Consumer.
● (TemplateId) templateId, WS-Agreement template id of

agreements based on this template.

Response ● (Agreement[]) WS-Agreement representation of
agreements matching the filter.

ID createAgreement

Description Creates an agreement for a given application.

Parameters ● (AAM) aam, Abstract Application Model of the application.
● (DAM) dam, Deployable Application Model of the

application.

D4.5 Unified Dashboard and revision of Cloud API 24

Response ● (Agreement[]) WS-Agreement (including generated
AgreementId) representation of the created agreements:

- 1 agreement in Customer - Application Provider level.
- n agreements in Application Provider - Cloud Provider level,

one per each cloud service used in the plan.

ID updateAgreement

Description Updates an existing agreement.

Parameters ● (Agreement) description, WS-Agreement representation of
the agreement. It may be internally modified, so the parameter
should not be taken as the agreement finally stored.

Response ● (Agreement) WS-Agreement representation of the
agreement.

ID terminateAgreement

Description Changes an agreement state to "Terminated" and stops any
enforcement.

Parameters ● (AgreementId) Id, WS-Agreement Id of agreement.

Response

ID getTemplate

Description Retrieves the template identified by its id.

Parameters ● (TemplateId) Id, WS-Agreement Id of template.

Response ● (Template) WS-Agreement representation of template.

ID getTemplates

Description Retrieves all the templates that match the filter.

Parameters ● (ProviderId) provider, Id of a Provider.
● (ServiceId) service, Id of a Service.

 ● (Template[]) WS-Agreement representation of templates
matching the filter.

ID createTemplate

D4.5 Unified Dashboard and revision of Cloud API 25

Description Creates a template.

Parameters ● (Template) description, WS-Agreement representation of
the template. It may be internally modified, so the parameter
should not be taken as the template finally stored.

Response ● (Template) WS-Agreement representation of template
(including generated TemplateId).

ID getAgreementStatus

Description Retrieves the status (violated, not violated) of service level
objectives and the overall agreement.

Parameters ● (AgreementId) Id, WS-Agreement Id of agreement.

Response ● (AgreementStatus) status of agreements and its respective
guarantee terms.

ID startEnforcement

Description Starts the enforcement of an agreement.

Parameters ● (AgreementId) Id, WS-Agreement Id of agreement.

Response ● (Boolean) status of enforcement.

ID stopEnforcement

Description Stop the enforcement of an agreement.

Parameters ● (AgreementId) Id, WS-Agreement Id of agreement.

Response ● (Boolean) status of enforcement.

ID createProvider

Description Creates a provider.

Parameters ● (Provider) description, name and description of provider to
create.

Response ● (Provider) SLA Service representation of provider (including
generated ProviderId).

D4.5 Unified Dashboard and revision of Cloud API 26

ID getQoSViolations

Description Get a list of QoS violations that match the filter.

Parameters ● (AgreementId) agreementId.
● (ProviderId) provider, Id of a Provider.
● (ServiceId) service, Id of a Service.
● (ResourceId) resourceId, Id of a Resource.
● (xs:datetime[]) dateInterval, if provided, violation must be

in the interval.

Response ● (QoSViolation[]) Violations matching the filter.

ID getQoBViolations

Description Get a list of QoB violations that match the filter.

Parameters ● (AgreementId) agreementId.
● (ProviderId) provider, Id of a Provider.
● (ServiceId) service, Id of a Service.
● (ResourceId) resourceId, Id of a Resource.
● (xs:datetime[]) dateInterval, if provided, violation must be

in the interval.

Response ● (QoBViolation[]) Violations matching the filter.

ID receiveQoSViolation

Description Notifies the SLA Service a QoS violation.

Parameters ● (QoSViolation) violation, violation sent by the Monitor.

Response

ID receiveHealingNotification

Description Notifies the SLA Service that the Policy Action was already done.

Parameters ● (AgreementId) agreementId.
● (PolicyId) policyId.
● (QoSViolationId) violationId.

Response

D4.5 Unified Dashboard and revision of Cloud API 27

3. SeaClouds Dashboard

The main goal of the SeaClouds Dashboard is to provide a simple interface to the
application administrator, where the description in this Deliverable is more focused
on the back-end, then considering the internal connections, related with the user
interface described in Deliverable D5.2.2 [1], more focused on the front-end.

3.1. Technical overview

The Dashboard is a pure HTML5 + JavaScript application. It uses REST calls to
interact with the SeaClouds Platform (Figure 2). The SeaClouds Dashboard is based
on the Bootstrap library [6], which allows adapting the website to the size of the
screen, providing a nice user experience with independence of the device (mobile,
tablet or traditional desktop). It also uses technologies like AngularJS [7] as a client
side MVC to provide all the functionality.

Figure 2. Dashboard interaction diagram.

3.2. Design and user experience

In this section we present the Dashboard user interface which will be employed to
use the services that are provided by SeaClouds. We describe the available
functionalities, like create and configure an application and its post-management.

D4.5 Unified Dashboard and revision of Cloud API 28

An important goal of this section is to specify the interaction among the SeaClouds
components for carrying out the different supported operations.

In the previous version of the dashboard, in Deliverable D4.2 [8], we proposed an
individual usage of the SeaClouds components, as they all were not really
connected. Although the consortium is thinking on the possibility of exploiting
SeaClouds functionalities as a whole and also using the components individually
(considering also the exploitation of design-time and runtime toolkits, or even
intermediate brokers - several components used for several platforms at the same
time), here we focus on the use of the dashboard following a wizard style, guiding
the user through all the components.

We are currently working on analyzing the dependencies among components, so
that single functionalities can be offered separately to the user (Discover
component, Deployer component, etc.). Since we do not have real conclusions on
this yet (that could be published in other future deliverables, such as “Deliverable
4.6 Prototype and detailed documentation of the SeaClouds run-time environment”
[9]), we prefer to focus on the design and user experience on the option "SeaClouds
as a whole", in order to avoid incoherencies between the wizards and the usage of
individual components.

Therefore, we plan to consider the generation of an advanced mode which allows
the user to interact with the modules independently (for example, discovering
Cloud Offerings without deploying an application, or deploying an existing
deployment plan specified in TOSCA YAML).

3.2.1. Main View

Once the user has logged in to SeaClouds Platform, the dashboard shows the
existing applications managed with SeaClouds and an option to add new ones
(Figure 3).

Figure 3. SeaClouds Main View.

Internally, the dashboard will ask the deployer about which applications are already
deployed by using the Deployer API, together with the global status of the
application (getApplications).

D4.5 Unified Dashboard and revision of Cloud API 29

3.2.2. Status View

In Figure 4, once the application is selected the SeaClouds Dashboard shows the
status of the application, and the current topology with the status of each node
(getApplication)

Figure 4. SeaClouds status view.

3.2.3. SeaClouds Assistants

SeaClouds Dashboard will ease to the Application Administrator / Designer the
interaction with the Platform thanks to the SeaClouds Assistants, which hide
unnecessary information about the processes or displaying the information in a
simple way (for example the user may not need to see the DAM before deploying it)
as it can provide the most common features.

3.2.3.1. Add new application
“Add new application wizard” (Figures 5, 6, 7, 9 and 10) hides most of the details
about the representation and the transmission of the data across the entire
platform. It’s designed to hide to the user low level details like TOSCA files or how
the modules interact between them.

The user only has to design the application by using a simplified version of the
Designer GUI, which does not output any TOSCA file. After the Application
Topology is defined, the user inputs the requirements of his application. Then,
SeaClouds will suggest the ideal Cloud Providers, and will provide a one-click
solution to deploy the application. Until the user confirms the deployment, the
dashboard saves the new application information retrieved from each step in the
client, waiting for the confirmation to send the data to SeaClouds platform.

D4.5 Unified Dashboard and revision of Cloud API 30

“Add new application wizard” starts asking the user for the name of the application
and the global properties which should be optimized as we can see in Figure 5.

Figure 5. Add a new application wizard, step 1.

Once the step 1 is completed, the user proceeds to design graphically the topology
of the application (Figure 6).

The user can add each of the modules that compose the application, configuring
each of them through an individual interface (see Figure 7). This configuration
includes technological requirements (like application language) and non-functional
requirements, which includes information about the cost, location, reconfiguration
policies and QoS constraints. The user also chooses between using IaaS or PaaS
infrastructure.

Once all this information is filled, the user can keep adding more modules in the
same way. When all application modules are configured, the Step 2 concludes.

In Figure 8 we can see how the Dashboard interacts with the SeaClouds
Components during the module creation process.

D4.5 Unified Dashboard and revision of Cloud API 31

Figure 6. Design an application topology, step 2.

Figure 7. Configuring an application module, step 2.

D4.5 Unified Dashboard and revision of Cloud API 32

Figure 8. Designing the application topology, step 2. Sequence diagram.

Before the third step of the wizard is visible to the user, the Dashboard sends the
AAM to the Matchmaker & Optimizer to retrieve the Cloud Offerings. When the
Dashboard has all the required information it shows it to the user (step 3), as we
can see in Figure 9.

Figure 9. Optimized plan selection, step 3.

D4.5 Unified Dashboard and revision of Cloud API 33

The step 4 (Figure 10) is just a summary where the user can review what will be the
result after the deployment process finishes. In this step, the Dashboard checks the
topology and shows the information about the selected providers, cloud resources,
estimate cost and other key properties of the application. Also, the user may modify
the SLA. Once the user checks and approves the generated profile, final step 5
shows the result of deploying the application.

Figure 10. Configuration summary, step 4.

Figure 11. Generation and deployment of a DAM. Sequence diagram.

D4.5 Unified Dashboard and revision of Cloud API 34

The Dashboard requests a DAM to the Planner (method), and sends it to the
Deployer (createApplication) who will finish the deployment autonomously (Figure
11), notifying the description process based on the result of the deployment.

3.2.3.2. Remove an existing application
The remove application assistant is a very simple wizard. It allows the user to
remove an application in three steps.

The first step (Figure 12) uses the Deployer API to retrieve from the live model
which applications are currently running on SeaClouds (getApplications).

Then, after the user selects one of them, the second step (Figure 13) of the wizard
shows the information about the application that the user wants to remove in order
to allow him to check if he selected the right application.

During the third step (Figure 14) is where the deletion process occurs. First, the
dashboard calls the SLA Service to remove the agreements associated to the
application.

Next, it calls the Deployer API to remove the application itself (deleteApplication),
notifying the result based on the result of the expunge process (Figure 15).

Figure 12. Selecting the application which will be removed, step 1.

D4.5 Unified Dashboard and revision of Cloud API 35

Figure 13. Removal operation confirmation, step 2.

Figure 14. Remove process summary, step 3.

D4.5 Unified Dashboard and revision of Cloud API 36

Figure 15. Remove application wizard. Sequence diagram.

3.2.4. Monitor section

Once an application is deployed and running, it is able to be monitored using the
Monitor interface. In Figure 16 we can see an example where several aspects of an
application are being followed and shown.

Figure 16. Application monitor.

In order to retrieve the data associated with this view, the dashboard internally
queries the API to retrieve what metrics are available for the selected application
(getAvailableMetrics). After that, the monitor has all the available metrics and the

D4.5 Unified Dashboard and revision of Cloud API 37

dashboard registers himself as an observer of the metrics to receive notifications
(addObserver) from the Monitor, and updates the graphs based on the metric
values (Figure 17).

Figure 17. Dashboard application monitoring process.

3.2.5. SLA section

The SLA view allows to check at a glance how your application has been working. It
shows the agreements for each provider, as we can see in Figure 18. Therefore, it
details the current SLA accomplishment. It maintains a list of the succeed rule
violations and a list of penalties as consequence of the aforementioned violations.
In Figure 19 we can see how the Dashboard does it internally using the SLA.

D4.5 Unified Dashboard and revision of Cloud API 38

Figure 18. SLA usage and status summarize.

In order to generate the view the dashboard retrieves all the available agreements
for the current application (getAgreements). Once the agreements are in the client,
per each agreement the dashboard queries the SLA about the global status of the
agreement (getAgreementStatus), together with historical data of the violations of
QoB (getQoBViolations) and QoS (getQoSViolations) and their associated penalties
(getPenalties).

Figure 19. Interaction between the Dashboard and the SLA API.

D4.5 Unified Dashboard and revision of Cloud API 39

3.3. Nuro Storyboard as use example of the API and Dashboard

Based on the Nuro Storyboard presented on previous deliverables [10], here we
briefly mention how interacting with the Dashboard during the use case affects to
the API. Note we are introducing here a brief explanation of the application of the
API and Dashboard, since we consider the images provided in the previous sections
(mentioned here but not included as regards the case study to not repeat them) are
enough explanatory.

In the Nuro Storyboard the user, Christian, wants to deploy his existing application
by using SeaClouds. The process starts opening the New Application Wizard where
the user deploys his application following the procedure illustrated in the Section
3.2.3.1.

The deployment plan is generated by SeaClouds, and after the deployment process
finishes, Christian could check how the application is working by using the Monitor
view inside the project view (Section 3.2.43.2.2). This contains an overview of the
most important application metrics for Christian.

Some violations of any QoS, SLA may occur at runtime. Christian also can plan to
expand his business, so he will probably need to be aware of this problem.

In order to ensure that the application will work as expected, Christian goes to the
Status view (Section 3.2.2), click the desired module and edit the module
properties. He can add a new policy associated with a reconfiguration in case of
happening some violation of the application.

4. Conclusions

This document has been structured in two main topics, the first one introduced the
SeaClouds API from a high level point of view, by describing the functionality that
each SeaClouds Component exposes via REST. This description has been focused on
explaining the most important functionality as it is not possible to define all the
helper methods because the API is still under development. The second one
showed a brief overall of the SeaClouds Dashboard, focused on how the Dashboard
interacts with the API.

In order to illustrate the relationship between the API and Dashboard the last part
of the document showed the application of the API and Dashboard ovre the Nuro
Storyboard.

D4.5 Unified Dashboard and revision of Cloud API 40

5. References

1. SeaClouds Project. Deliverable D5.2.2. Final Design of the User Interface
(SeaClouds Consortium), March 2015 (to be published).

2. SeaClouds Project. Deliverable D3.2. Discovery, design and orchestration
functionalities (SeaClouds Consortium), March 2015 (to be published).

3. Hromkovic, Juraj, Algorithmics for Hard Problems: Introduction to Combinatorial
Optimization, Randomization, Approximation, and Heuristics. 2010, Springer-Verlag.

4. Model-driven approach for design and execution of applications on multiple
clouds, Project is partially Funded by European Commission Grant no. FP7-ICT-2011-
8-318484, 2013-2015, https://github.com/deib-polimi/modaclouds-monitoring-
manager/wiki

5. SeaClouds Project. Deliverable D4.4. Dynamic QoS Verification and SLA
Management Approach (SeaClouds Consortium), March 2015 (to be published).

6. Bootstrap: A framework for developing responsive, mobile first projects on the
web, http://getbootstrap.com/ 2015.

7. Angular JS: HTML enhanced for web apps, https://angularjs.org/ 2015.

8. SeaClouds Project. Deliverable D4.2. Cloud Application Programming Interface
(SeaClouds Consortium), September 2014 http://www.seaclouds-
project.eu/deliverables/SEACLOUDS-D4.2-
Cloud_Application_Programming_Interface.pdf

9. SeaClouds Project. Deliverable 4.6. Prototype and detailed documentation of the
SeaClouds run-time environment (SeaClouds Consortium), June 2015 (to be
published).

10. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds
Consortium), February 2015 (to be published).

https://github.com/deib-polimi/modaclouds-monitoring-manager/wiki
https://github.com/deib-polimi/modaclouds-monitoring-manager/wiki
http://getbootstrap.com/
https://angularjs.org/
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-Cloud_Application_Programming_Interface.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-Cloud_Application_Programming_Interface.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-Cloud_Application_Programming_Interface.pdf

