SeaClLOoOUDS

AGILITY AFTer DePLoymenT

Modelling Planning Controlling

SeaClouds Project

D4.6 Prototype and detailed
documentation of the SeaClouds run-
time evironment components

Project Acronym

SeaClouds

Project Title

Call identifier

Grant agreement no.
Start Date

Ending Date

Work Package
Deliverable Code
Deliverable title

Nature
Dissemination Level
Due Date:
Submission Date:
Version:

Status

Author(s):

Reviewer(s)

Seamless adaptive multi-cloud management of service-
based applications

FP7-1CT-2012-10

Collaborative Project

1° October 2013

31 March 2016

WP4, WP SeaClouds run-time environment

D4.6

Prototype and detailed documentation of the SeaClouds
run-time evironment components

Report

Public

M22

July 31st, 2015 (planned) - Sept 10th, 2015 (submitted)
1.0

Final

Javier Cubo (UMA), Miguel Barrientos (UMA), Marc Oriol
(UPI), Michele Guerriero (POLIMI)

Elisabetta Di Nitto (POLIMI)

Dissemination Level



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning Controlling

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Project co-funded by
the European
Commission within the
Seventh Framework

Programme
PU Public X
pp Restricted to other programme participants (including the
Commission)
RE Restricted to a group specified by the consortium (including the
Commission)
o Confidential, only for members of the consortium (including the
Commission)
Version History
Version Date Comments, Changes, Status Authors, contributors,
reviewers
0.1 08/07/15 | First ToC Javier Cubo (UMA)
0.2 13/07/15 First contributions, including the Design of | Javier Cubo (UMA)
Deployer, Monitor, SLA service, and
Dashboard
0.3 20/07/15 Second contributions, including Architecture | Javier Cubo (UMA), Marc
& Design of Deployer, Monitor, SLA, | Oriol (UPI)
synchronization with D3.3
04 27/07/15 Modifications as regards the API sections Javier Cubo (UMA), Miguel
Barrientos (UMA)
0.5 15/08/15 Final contributions for internal review Javier Cubo (UMA)
0.6 20/08/15 Revision Elisabetta Di Nitto
(POLIMI)
0.7 24/08/15 Modifications Michele Guerriero
(POLIMI)
0.8 03/08/15 Modifications Michele Guerriero
(POLIMI), Miguel
Barrientos (UMA), Javier
Cubo (UMA)
1.0 08/09/15 | Final version Javier Cubo (UMA)




seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Table of Contents

EXECULIVE SUMMIAIY ...t e e e e e e e e e e e e eeeeeeeeeesesaaas 6
O [0 o Yo [0 o o PP SRR 7
1.1, Structure of this dOCUMENT ...cceiiiiiiiie e e raaeee s 7
1.2, GlOSSAry Of ACTONYMIS.....uiiiiiiiiiiiieee e e e e ettt e e e e e e e e e e ebbaraaeeeeaaeeeeesssasstaaaeeaaaaasessnansnes 7

2. ArchiteCtural OVEIVIEW .......uviiiiiiiiiiiie ettt e e e s s atae e e e e s 7
3. Dashboard and SEaCIoUdS APl........uuuiiiiiiiiiiiee et e e 8
N 0 1= o] [0} V= PO PPPRP 10
4.1, Archit@Cture & DESIZN ....uuuiiiiiieeeeeeiieicctiette et e e e e e e esecctrre e e e e e e e e e e e e seababraeeeeeaaeesessnnsens 10
4.2. Implementation & DEPlOYEr APl .........uuiiiiiiiiie ettt e et re e e e e e e e e e eeannes 14
oy 0t W V=1 411 o T [ T4V 2SS PPRPUR 14
R [ 01 T s - ol YRR UPR 14

L T \Y/ o] o 1 {0 ] SR OO PP U TP PUPPPPPPPRRPTIRt 17
5.1, ArchiteCture & DESISN ..uueeiiii e e e ettt et e e e e e e e e e e st rrr e e e e e e e e e e eenansssaaaees 17
5.2.  Implementation & MONItor APl.........ueeieiiii it e e e 20
5.2.1. Monitoring Manager APIS ... e 21

6.  SLA SBIVICE ittt e e e e e e et ettt r e as 23
6.1.  ArchiteCtUre & DESISN ..uveeiiee i e e ettt et e e e e e e e e e e st rr e e e e e e e e e e e e e eassasaaaees 24
6.2. Implementation & SLA SErviCe APl......eeeei i it e e 25
6.2. 1. TeIMINOIOZY . ccciii ittt ettt e e e e e e e e be e e e e e e e e e e e e ababberaeaeaaeeeeesnnnnes 25
L3 A | o = & - Yol TP UPR 26

7. How to get and install the SeaClouds Integrated Platform ........ccccccveeevviiinneennnn. 30
S S @0 To (o] [V 1] o] o 13PTSR 31
REFEIENCES .ttt e e e e s st e e e e e s e e e e e e e bbaaeeesennaaes 32



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

List of Figures

Figure 1. SeaClouds Archit@CtUIe........uuiiiiiiiiiiiee e 8
Figure 2. Dashboard interaction diagram .........cceeeiiviiiieiiiiniiiiee e 9
Figure 3. Architecture of the Deployer component.........ccoccvieeeeeiiiiiieeeeinniiieeee e 10
Figure 4. DeplOoymMENT PrOCESS ...uviviiiiiiiiieeiesiiitee e e esittee e e s sirae e e e e s sbreeeeesssabbeneeesennnnes 12
Figure 5. Sequence diagram for REPairing ProCeSss ........eeevvecvrieeeeiriiuveeeeeensiireeeesennnns 13
Figure 6. Sequence diagram for replanning ProCess .......cccoeccveeeeeeiiiiiieeeesssiineeeeeennnns 13
Figure 7. Architecture of the Monitor component.........cccocveeeviiiiiniieiiiieeeeeeeee, 18
Figure 8. Monitoring rules pSeUdOCOdE .........uuveviiiiiiiiiiee e 19
Figure 9. XML code of a simple monitoring rule..........cccccevvviiiieeieiniiiiiee e 19
Figure 10. Sequence diagram of the monitoring process and interactions........ 20
Figure 11. Architecture of the SLA SErviCe ........euviiviiiiiieeiiiiiieee e 24



AGILITY AFTEr DerPLOYMEeNT

seacLoubs D4.6 Prototype and detailed documentation
Modeling  Planning  Controling of the SeaClouds run-time environment

List of Tables

LI o] (= R Yol o 01V LU PUPPPP 7



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Executive Summary

This document presents a prototype and the documentation for the different
components of SeaClouds related to the run-time part. In detail, it presents: (i) a
description of the SeaClouds unified management dashboard and a subset of the API
related to the run-time environment components (in Deliverable D4.5 [1] was
introduced the SeaClouds API), (ii) an architecture & design description of the
Deployer, and prototype multi-deployment techniques; (iii) an architecture & design
description of the component to trace cloud applications, extracting monitoring data,
the Monitor, and the corresponding prototype; (iv) a description of the architecture
and design of the SLA, and the SLA prototype; and finally (v) an explanation of how to
get and install the SeaClouds components and the SeaClouds Integrated Platform.

The code of such implementation is released under Apache 2.0 license and can be
downloaded from the SeaClouds Platform github repository
https://github.com/SeaCloudsEU.




seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

1. Introduction

This document describes the prototype of the SeaClouds components used at run-
time. It includes the architectural definition, the relationship between components,
and their technical details. Deliverable D3.3 [2] will present the corresponding
implementation for the design-time components.

The SeaClouds project is an open source software released under Apache 2.0 license
and the released prototype can be downloaded from the SeaClouds Platform github
repository https://github.com/SeaCloudsEU.

1.1. Structure of this document

The structure of this document is as follows. Section 2 presents an architectural
overview of the SeaClouds platform checking the different components and
functionalities. Section 3 presents how the SeaClouds platform is organized, with the
connections of the Dashboard with the rest of components, as well as the structure
of the API (everything following the ideas already exposed in D4.5, but with some
modifications). Sections 4, 5 and 6, respectively presents the individual architecture
and design as well as the implementation (service layer API). Finally, we close the
document with the final conclusions.

1.2. Glossary of Acronyms

Here we list the different acronyms which will be used in this document.

Acronym Definition
Saa$s Software-as-a-Service
Paa$S Platform-as-a-Service
laaS Infrastructure-as-a-Service
QoS Quality of Service
QoB Quality of Business
SLA Service Level Agreement
GUI Graphical User Interface
AP| Application Programming Interface
APP Application
AAM Abstract Application Model
DAM Deployable Application Model
ADP Abstract Deployment Plan
YAML YAML Ain’t Markup Language
REST Representation state transfer

Table 1. Acronyms.

2. Architectural overview

This section describes the architectural overview of the SeaClouds platform. In Figure
1 we illustrate the current version of the architecture which was refined from



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Deliverable [3] considering the implementation and design decisions taken during the
development of the platform.

Dashboard / SeaClouds API

[ A
T 4 Confirmed Deployable Busmelss SLAinfo
1 3 gsre 6
Abstract Deployable Application Model >
Application  Application ¢ SLA setup SLA Service o
l Deployer 5| L SLAManager |i«<— alers
p SLA Generator =
Planner Deployer Engine Live «— T
_> %) o
] oudad Model Repairing  Subscription 7
Matchmaking Goudadapters sl to rules
10 & |
o | v -
Optimizer < Monitor
- Replanning 713
I T triggers —
5 . Data | | Monitoring
Cloud |\ > Monitoring
Providers request setup > Analyzer Manager
8
{/ l App Deployment and
’ Data Collector installation
Discoverer .
. a— N o~ " ¥ N\ g
i o i [ i
( bi Application ( z Application o Monitoring
( module module event

e e
" Collector K—, Collector

Figure 1. SeaClouds Architecture

The SeaClouds Architecture is well-explained in Deliverable D2.4 [4]. In Deliverable
D3.3 [2] the implementation of the design-time part (Discoverer and Planner) will be
more detailed. As regards the runtime part, in next sections of this document, we
describe the architecture focusing on the Deployer, Monitor and SLA components for
runtime execution. Nevertheless, in order to understand how all the components
communicate among them, firstly, we present the organization of the components
having as reference to the Dashboard and API, in the next section.

3. Dashboard and SeaClouds API

The main goal of the SeaClouds Dashboard is to provide a simple Graphical User
Interface (GUI) to the application administrator, unifying the usage of every
functionality provided by each of the SeaClouds components. SeaClouds Dashboard
gives access to the SeaClouds components by composing the different services
offered into a single SeaClouds API.

The code of the Deployer is available at:
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/dashboard

From a technical point of view, SeaClouds Dashboard is a web application composed
of two tiers: frontend and backend (Figure 2). Frontend layer is a pure HTML5 +
JavaScript application. It uses REST calls to interact with the backend layer. The



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

SeaClouds Dashboard is based on Bootstrap [5] to provide a responsive and adaptive
design, AngularJS [6] as a client side MVC to provide all the functionality. This enables
the adaptation of the website to the size of the screen, providing a nice user
experience with independence of the device (mobile, tablet or traditional desktop). It
also uses

The backend layer of the dashboard is a Java application that composes a service
layer, offering and forwarding REST services from the different SeaClouds
components to the Dashboard frontend application. Dashboard Backend also
performs authentication tasks and maintenance of user properties, like information
about the deployed applications and credentials to access the different providers.

Dashboard
Frontend
[Deslgnef GUI] [s::ﬁlouds ] HTMLS + JS
Public
Intranet Backend
Java
[ Authentication ]
| SeaClouds API ..~ T e el |
’ Planner
Discoverer Deployer Monitor ’ SLA Service

Matchmaker
Figure 2. Dashboard interaction diagram

In Deliverable D4.5 [1], we already presented the Dashboard user interface which will
be employed to use the services that are provided by SeaClouds. We described the
available functionalities, like create and configure an application and its post-
management, by specifying the interaction among the SeaClouds components for
carrying out the different supported operations.

The SeaClouds functionalities is currently being exploited as a whole, following a
wizard style, guiding the user through all the components. Also, SeaClouds is
exposing the components with the possibility to exploit them individually
(considering also the exploitation of design-time and runtime toolkits, or even
intermediate brokers - several components used for several platforms at the same
time).

We are currently working on analyzing the dependencies among components, so that
single functionalities can be offered separately to the user (Discover component,
Deployer component, etc). In principle, we are mainly focused on the design and user



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

experience on the option "SeaClouds as a whole", in order to avoid incoherences
between the wizards and the usage of individual components. Therefore, we have
implemented an advanced mode which allows the user to interact with the modules
independently (for example, deploying an existing deployment plan specified in
TOSCA YAML).

4. Deployer

The main goal of the Deployer component is to deploy the application in a multi-
cloud environment. To do this, it reads a Deployable Application Model (DAM)
which contains the necessary information to deploy an application over a set of
cloud providers (locations). More specifically, the DAM describes the application
topology detailing the application components, relationships, dependencies,
features, constraints, target providers, etc. Therefore, the DAM includes an
embedded deployment plan for carrying out the deployment based on the modules
dependencies and relations.

4.1. Architecture & Design

Figure 3 shows the architecture of the Deployer component. The deployer is
composed of several elements (more details in Deliverable D4.1 [7]). The main
element is the Deployer Engine, which receives a Deployable Application Model
(DAM) through its Deployer APl and executes the DAM. As the Deployer Engine is
cloud-agnostic, it is able to deploy applications on different cloud providers using
multiple Cloud Adapters (Paa$S and laaS levels).

Deployer
[ Deployer API ]
| Exptse
Deploy an
Appilication deployment

status

| 2

Deployer Engine

Management

Live Model

JV

Cloud adapters

Deployment context Management

Cloud Providers

Figure 3. Architecture of the Deployer component

10



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Once the application has been deployed, the Deployer Engine maintains the Live
Model, which contains (i) the data structure (components and relationship between
these) in order to maintain the topology of the application, with a profile about the
topology of the real application distribution over the target providers (using the cloud
adaptors), (ii) the relationships and dependencies, (iii) the used services, and the
deployment context (IP of the used machines, used O.S., real listener port, metadata
of the applications components, etc).

Currently, SeaClouds is using Brooklyn [8] as Deployer Engine to accomplish the
multi-cloud deployment of the application components and the Live Model
generation and management.

The application components could be deployed over different cloud providers
simultaneously, using jClouds [9] as Cloud Adapter at laaS level, and currently the
SeaClouds consortium is developing a set of PaaS connectors to deploy against PaaS
providers, including mainly Cloud Foundry, OpenShift and Heroku (trying to generate
a unified layer at the PaaS level, similar to jClouds at the laaS level). Thus, we define
the DAM based on the YAML Blueprint specification of Brooklyn [10].

The live model is used by the Monitor and Dashboard, to maintain the status of the
application according to the constraints and the features which have been described
by the user. In addition, the live model is checked by the Dashboard in order to
maintain the graphical representation of the application distribution.

Therefore, the Deployer provides a way to manage the application related
resources, like the Live Application Model which contains the services used by an
application and their configuration, the location for each of the application modules,
and the relationships among modules.

The live model consists of many of the same pieces as in the deployable model, with
some important additions, such as sensors values, policies, additional entities (if
creation of some entities results in children), or effectors (operations) available.

All aspects of the live model are exposed through a REST APl where entities can be
navigated, and all current information about children, sensor values, and policies
can be accessed. By assigning UUID’s as part of the deployable model, these ID’s can
be tracked in the live model and live information about the components requested
to be deployed can be accessed as needed, by the planner or by an operator.

Once the application have been deployed, its management is accomplished by the
Deployer and the Monitor is checking the status of possible violations, connected to
the SLA Service (see Deliverable 4.4 [11] where the Dynamic QoS verification and
SLA management approach is detailed).

Whether a violation occur, then a reconfiguration process is required. This process is
detailed in Deliverable 4.3 [12].

11



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Figure 4 shows the sequence diagram for the deployment process, while Figures 5
and 6 show the reconfiguration process after a violation occurs.

| Dashboard | | Deployer | | Monitor

L createApplication(DAM) »

1 . .

e application|D - ————] — monitoringRules(rules) —»

I

I loo ——

— getApplication(application| D) | _pJ

I

| _____ Applicaton

i< (status = starting) Check QdS
L eck Qg

1

— getApplication(applicationl D) —y:,

‘i<_____ Application
|
]
I
I
]

(status = running)

———————— L

Figure 4. Deployment process

As seen in Figure 4, deployment process starts with the input of the DAM
(createApplication) to the Deployer. Once the deployer has the deployment
information, it forwards the monitoring rules to the Monitor.

This will setup the connections to the Data Collectors needed by the Monitor so that
it can start checking QoS properties. While the application is being deployed, any
request of information about the application (getApplication) will return a
“STARTING” status, indicating that it hasn’t been deployed completely. Once the
deployment has finished, the application status will change to “RUNNING”.

The repairing process (Figure 5) requires an existing deployed application already
running in SeaClouds. During the deployment phase, monitoring rules have been
installed and configured on the Monitor.

This will allow the Deployer to be aware of QoS violations that can trigger one of the

repairing processed supported, mainly based on policies. Dashboard can retrieve the
status of the application to keep track of the repairing process.

12



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modeifig  Ponnidg  Conroling of the SeaClouds run-time environment
Dashboard I Deployer | | Monitor

1
E
——addApplication(DAM) —» !
! 1
I<_ _____ appld-——————] — monitoringRules(rules) |

-

i

|

|

|

|

|

|

|

|

|

|

|

|
L

1
Application[appld] |
1
1
=———QoS violation

Repairing
process

getApplication(appld)

»
»

<=—— Application[appld] ———

Figure 5. Sequence diagram for Repairing process

Replanning process (Figure Z) follows a more complex interaction between
components. Once repairing actions are unable to fix existing QoS violations an alert
is triggered from the Deployer and it will show the need of performing a replanning.
Once a replanning scenario has been recognised, a confirmation request will be
send to the user through the Dashboard, triggering a replanning request on the
Planner (replan). The new actions generated by the Planner will be forwarded to the
Deployer to perform the needed modifications.

[ Dashtoard | [ Deplover | SLA_|[__Plamer
j T T T
i i ! i |
i i ! | |
! : | 4—— Register observer i :
i : jm———— observerld ———= i i
i | i i
' 1 1 I 1
i Repairing i — receiveQoSViolation() =1 i
' process ! |
i ! |
1 | |
i — Repairing |
+—getApplication(appld)»| — can't be performed >
S —— . ;
Application !
|
]

i
|
i
I
| (STATUS = ON FIRE)
I
i
|
i
|

|
Replanning request
|
I e R replanning confirmed by user- - - -------
|

Replanning proposal

&
<

—— Replanning actions—»

v

“4—Replanning finished
1

Figure 6. Sequence diagram for replanning process

13



AGILITY AFTEr bePLoOYmMenT

seacLoubs D4.6 Prototype and detailed documentation
Modeling  Plannidg  Gonfroling of the SeaClouds run-time environment

4.2. Implementation & Deployer API

The Deployer API provides the resources to deploy and manage application modules.
It contains the methods for managing the application deployments. The code of the
Deployer is available at:
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/deployer

4.2.1. Terminology

e Application: represents an application which was deployed by the Deployer.

o ID: unique identifier

o Name: given name for the application

O Status: current lifecycle status of the application (“Starting”,

“Running”, “On fire”, “Stopped”, etc.).
ConfigParameters: list of configured application parameters
Policies: list of attached policies
Modules: modules that compose the application
o Effectors: operations that can be invoked on application
® Module: represents each of the modules that compose an application.

o ID: unique identifier

o Name: given name for the module

O Status: current lifecycle status of the entity (“Starting”, “Running”,
“On fire”, “Stopped”, etc.).

o ConfigParameters: list of parameters configured on the module. This
includes environment variables, endpoint description (domain, ports,
etc),

o Policies: list of attached policies

o Effectors: operations that can be invoked on module

e Effector: represents the possible actions that can be performed on each
application module.

O Action: the action that will be performed

o Description: a description of the action.

® Location: represents the cloud provider where the managed application
modules will be deployed.

o Provider.

O Region.

O O O

4.2.2. Interface

ID getApplication

Description | Returns the details of an existing application (modules, status,
location, etc).

Parameters e (String) applicationld: ID of the application.

14



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

Response e (Application) application: found application

ID getModule

Description | Returns the details of an existing application module (status,
location, policies, configuration, etc).

Parameters e (String) applicationld: ID of the application.

e (String) moduleld: ID of the module.

Response o (Module) module: application module details.

ID getApplications

Description | Returns the list of deployed applications.

Parameters

Response e (Application[]) applications: list of available deployed

applications

ID createApplication

Description | Creates and deploys a new application, given a Deployable
Application Model.

Parameters e (String) deployableApplicationModel: application

description

Response ® (String) applicationld: ID of the created application

ID deleteApplication

Description | Removes a running application, releasing all cloud resources
associated to it.

Parameters ® (String) applicationld: ID of the application to be removed.

Response

ID getEffectors

Description | Returns the list of available effectors for an Application Module.

15



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

Parameters e (String) applicationld: ID of the application.
® (String) moduleld: ID of the module where to retrieve the
effectors.
Response o (Effector[]) effectors: List of effectors available on the
module.
ID callEffector
Description | Triggers an effector action associated to a module.
Parameters e (String) applicationld: ID of the application.
e (String) moduleld: ID of the module that contains the target
effector.
e (String) effector: ID / action to be triggered
e (String[]) effectorParameterList: additional parameters
required by the effector.
Response
ID getlLocations
Description [ Retrieves the available locations in the deployer.
Parameters
Response ® (Location[]) locations: list of currently supported locations.
ID getAvailablePolicies
Description | Retrieves the available policies that can be attached to certain kind
of module.
SELEMEE ® (String) moduleType: module type
AR ® (Location[]) locations: list of currently supported locations.
ID addSlaAgreements
Description Setup SLA agreements for a given application.

16



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modeling  Planning  Confroling of the SeaClouds run-time environment

SELEMEE ® (String) applicationld: ID of the application

® (SlaAgreements) agreements: agreements to be setup on
the SLA service.

Response

ID addMonitoringRules

Description | Setup MODACIouds monitoring rules for a given application.

SELEMEE ® (String) applicationld: ID of the application
® (MonitoringRules) rules: rules to be setup on the Monitor
component.
Response
5. Monitor

The Monitor component is in charge of monitoring that the QoS properties of the
application modules and the whole application are not violated by the clouds in
which they were deployed. For this component SeaClouds adopts Tower 4Clouds, a
multi-cloud monitoring system developed within the MODACLouds european
project. For the SeaClouds purposes, thank to Tower 4Clouds flexible and extendible
architecture, specific pluggable components are implemented. Along this path the
SeaClouds Monitor can be considered the conjunction of Tower 4Clouds plus a
collections of self contained additional components provided by SeaClouds. It can be
accessed using the Monitor API. Tower 4Clouds works by means of monitoring rules
to be executed for controlling the corresponding cloud application. These
monitoring rules include the resources to be monitored, the metrics to be collected,
the formulas to be verified and the actions to be executed when the formulas
become true. Such actions can include performing REST calls to other components,
e.g., the Deployer (Live Model) or the Planner, enabling/disabling monitoring rules
and generating new metrics as output. Such metrics could be used then to trigger
other monitoring rules or to trigger reconfiguration actions.

5.1. Architecture & Design

Figure 4 shows the architecture of the Tower 4Clouds. The system is based on the
idea of using Data Collectors to acquire monitoring data from various sources. In the
figure we have as an example five different types of Data Collectors in charge of
interacting with different components, either at the infrastructural or at the
application level.

17



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

These Data Collectors can be installed anywhere it is suitable for the system under
analysis. New Java Data Collectors can be implemented and plugged in starting from
the data-collector-library that is available here [13], which implements the necessary
protocol between a Data Collector and Tower 4Clouds. Non Java Data Collectors
should be able to use the following MODACIouds platform interfaces:

e DDA (Deterministic Data Analyzer) interface as monitoring data must be sent
to the DDA accessing the exposed interface.

e Monitoring Manager to retrieve the configuration and notify the monitored
resources and the provided metrics per resource.

The Monitoring Manager is the main interface to access all Tower 4Clouds exposed
services, like for example to install new monitoring rules, which can be also accessed
using the provided Java client available here [14], which is on turn used by the data-
collector-library.

REST
Manager endpoint &

C 8 Webapp
Fr w
Virtual Machine X ~
Configuration
Install Monitoring
Configure Triggered Rules / Register
Application Actions Observer
Java App DC o \ /
U Monitoring
Data >
Data Analyzer
Data Collectors
1 Monitoring
VM [P— Data / Events
DataCollector na
Monitoring
Data Monitoring
U Data Metrics

a Observers
- J \ / Metric Explorer

Statistical Data
Analyzers

RDF History DB

Figure 7. Architecture of the Monitor component

Each Data Collector first notifies the Monitoring Manager about the resources it is in
charge to monitor and the provided metrics per resource. Then it retrieves its
configuration, which depends on the installed rules looking for a metric the Data
Collector is able to provide. Tower 4Clouds merges the information coming from all
the installed Data Collectors and builds an unique monitoring model containing all
the available resources in a hierarchical structure. Thanks to this, it can aggregate
and filter data at various levels of abstraction. During their execution, Data Collectors
send periodically data to the Deterministic Data Analyzer that filters them based on
the definition of the Monitoring Rules it has installed. Monitoring rules predicate on
Resources that are defined in the monitoring model. For instance, in Figure 8, you
can see the pseudocode of two rules. The execution of the first rule will result in the

18



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

following behavior. All data collectors in charge of monitoring CPU metric on all VMs
of type Frontend will send a monitoring datum every 10 seconds. The Data Analyzer
will compute every 60 seconds the Average of the last 60 seconds of data. It will also
partition data per VM and output the results as frontend_average_cpu metric.

The second rule is acquiring the datum RespTime (response time) measured at the
level of each call of the Register method. This datum is acquired by the data collector
with probability 0.5. Every 60 seconds the data analyzer computes the 95th
percentile of this response time considering the data acquired in the last 60 seconds.
The result of this calculation is grouped by cloud provider. If such a metric is greater
than 2000, the register_95p_rt_violation metric is produced. This metric could be
observed, for instance, by the Deployer that could take some recovery action (e.g.,
scaling up).

Monitoring Rule

TimeStep: 60s TimeWindow: 60s
Target: class:VM, type:Frontend
Collect: CPU (samplingTime: 10s)
Compute: Average
GroupBy: VM
Action: OutputMetric(frontend_average_cpu)

Monitoring Rule

TimeStep: 60s TimeWindow: 60s
Target: class:Method, type:Register
Collect: RespTime (samplingProb: 0.5)
Compute: 95thPercentile
Condition: metric > 2000
GroupBy: CloudProvider
Action: OutputMetric(register_95p_rt_violation)

Figure 8. Monitoring rules pseudocode

<monitoringRule timeWindow="60" timeStep="60" id="cpuRule">
<monitoredTargets>
<monitoredTarget class="VM" type="Frontend" />
</monitoredTargets>
<collectedMetric metricName="CpuUtilization">
<parameter name="samplingTime">10</parameter>
</collectedMetric>
<metricAggregation aggregateFunction="Average"
groupingClass="VM" />
<actions>
<action name="OutputMetric">
<parameter name="name">frontend_average_cpu</parameter>
</action>
</actions>
</monitoringRule>

Figure 9. XML code of a simple monitoring rule.

19



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

Figure 9 shows the full code of the first monitoring rule in Figure 4. MODAClouds
deliverable D5.2.2 [15] provides more details on this language.

A component willing to observe an OutputMetric generated by the DDA is called
Metric Observer. It should basically be a REST endpoint able to receive monitoring
data serialized as RDF JSON or as other available output formats. The Monitoring
Manager exposes a specific service to attach an Observer to an available
OutputMetric, specifying the endpoint to which it has to send metric values and the
preferred format. As we said every component which needs to interact with Tower
4Clouds, or with the SeaClouds Monitor component, should access the Monitoring
Manager exposed REST services.

Figure 10 shows the sequence diagram of the monitoring process and interactions.

+ Data Collector + Tower 4Clouds + Dashboard + SLA Service +' Planner

register(DCDescription)

»
»

cumrently installed monitoring rules

runtime metrics and information

visualization data and replanning notification

A J

SLAs violations

replan(curentDAM, additionallnfo) [when an application is on fire]

A J

Figure 10. Sequence diagram of the monitoring process and interactions.

5.2. Implementation & Monitor API

As we said the SeaClouds Monitor is realized by Tower 4Clouds plus some additional
components, mainly new Data Collectors, developed for SeaClouds specific purposes.
So far a new Data Collector ha been developed for the NURO case study providing
NURO application specific metrics. New Data Collector are probably to be developed
within the development of SeaClouds reconfiguration and replanning features.

Regarding the SeaClouds Monitor APIs, which have to be used by every the other
SeaClouds component in order to interact with the SeaClouds Monitor as descrived in

20



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

the previous section, they are the same provided by the Monitoring Manager to
access the main services of Tower 4Clouds.

The latter, as we described in the previous section, uses three core components, the
Monitoring Manager, the Data Analyzer, and one or more Data Collectors, as
specified below:

e The Monitoring Manager is the coordinator of MODACIouds platform.

e A Data Collector is responsible for collecting monitoring data from cloud
resources and applications and to associate semantic information to the data.

e The Data Analyzer processes monitoring data coming from data collectors and
tries to detect on-the-fly patterns that emerge directly from the data, without
the need of major transformations of the data itself.

The code for the Monitor can be found at:
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/monitor

In the following section, following the same schema adopted for the other SeaClouds
components, a description of the available monitoring services is provided.

5.2.1. Monitoring Manager APlIs

ID GET /monitoring-rules

Description | Returns the list of installed monitoring rules.

Parameters ® None

Response e Status: 200 OK
Body: An XML object with a list of monitoring rules

ID GET /monitoring-rules/{ruleld}

Description Updates monitoring rules properties.

Parameters e enabled

o type: boolean

o optional: no

o description: enable/disable a rule

Response e Status: 204 No Content

ID POST /monitoring-rule

21



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

Description | Install monitoring rules.

Parameters e An XML object with monitoring rules conforming to the
Monitoring Rules Schema.

Response e Status: 204 No Content

ID DELETE monitoring-rule/{ruleld}

Description | Deletes a monitoring rule.

Parameters e None

Response e Status: 204 No Content

ID GET /metrics

Description Returns the list of Observable Metrics.

Parameters e None

Response e Status: 200 OK
Body: A json array with the observable metrics.

ID GET /metrics/{metricld}/observers

Description Returns the list of observers attached to the metric.

Parameters e None

Response e Status: 200 OK
Body: A json array with information about attached
observers.

ID POST /metrics/{metricld}/observers

Description | Attach an observer to the metric.

Parameters ® A JSON object containing the following fields:

e format
O type: String
O optional: yes
o default: RDF/JSON

22



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modeling  Planning  Confroling of the SeaClouds run-time environment

o description: specifies the serialization format
e protocol
O type: String
O optional: yes
default: HTTP
o description: specifies the transfer protocol
e callbackUrl
O type: String
O optional: no, if protocol is HTTP
o description: the full endpoint url of the
observer
® observerHost
O type: String
O optional: no, if protocol is either TCP or UDP
o description: the IP address of the observer
® observerPort
o type:int
O optional: no, if protocol is either TCP or UDP
o description: the port to which the observer is
listening to

(0]

Response e Status: 201 Created
Body: a json object containing the information about the
observer just registered together with its server assigned id.

ID DELETE /metrics/{metricsld}/observers/{observerld}

Description Detach the observer from the metric.

Parameters ® None

Response e Status: 204 No Content

6. SLA service

The SLA service component is in charge of mapping the low level information
gathered from the Monitor into business level information about the fulfilment of
the SLA defined for a SeaClouds application, using the SLA Service API. At runtime,
the component is in charge of supervising that all the agreements are respected.
Because QoS is already assessed by the Monitor Component, the SLA service is more
focused on the enforcement of business oriented policies (QoB: Quality of Business),
which represent a constraint on a metric that impact on the business of the
application, and the business actions to apply in case of violation. It relies on the
Monitor Component to fulfill this task. As a result of the enforcement process, the

23



AGILITY AFTEr bePLoOYmMenT

seacLoubs D4.6 Prototype and detailed documentation
Modeling  Plannidg  Gonfroling of the SeaClouds run-time environment

component stores the produced QoS and QoB violations and penalties, maintains the
fulfillment state of each agreement and notifies the results to other components.

6.1. Architecture & Design

Figure 11 shows the architecture of the SLA service component.

SLA Service
........................ Aoastasassat it st sanines,
Repository
Ltemplates | QoB
- 4—' S '—A ment
violations Ssessme
o5
: 1 violations penam :
Historical / :
Observer > M;I;Aéer ll s ,' Monitoring
(GUI) . vy T
| Planner } > SLA
Generator

Runtime
Observer (GUI)

Figure 11. Architecture of the SLA Service

Figure 11 gives a detailed overview of the software components of the SLA Service
and how they are related to other SeaClouds services.

The SLA Service enables the Service Level Agreements (SLA) management of
business-oriented policies. The main responsibilities of the SLA service are:
generating and storing WS-Agreement templates and agreements, and assessing that
all the agreements (SLA guarantees) are respected by evaluating the business rules.

The SLA Service is an implementation of the WS-Agreement specification [16], which
defines schemas for SLA Templates and SLA Agreements. A summary of the format of
agreements and templates can be located at [17].

According to WS-Agreement:

e A template is a document used by the service provider to advertise the types
of offers it is willing to accept.

® An agreement defines a dynamically-established and dynamically-managed
relationship between a provider and a customer, where the object of this
relationship is the delivery of a service by the provider to the customer.

24



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

A template or agreement contains functional and nonfunctional terms that describes
the service being delivered. In SeaClouds, we are mostly interested in nonfunctional
terms (Guarantee Terms), where a Service Level Objective (SLO) is defined as a
constraint on a metric, and a list of business values describing the result of not
fulfilling an objective.

The templates may be used as a base to create the actual agreements. Also, an
agreement may contain additional terms not found in a template. For example, in
SeaClouds, the agreements will contain Quality of Business (QoB) policies specified by
the application designer, but not specified in a cloud provider template.

The purpose of QoB constraints is to perform a long-term analysis of the service,
while the QoS constraints evaluated by the Monitor Component have a closer look at
the performance of application.

The application designer can enrich the agreements based on the cloud provider
templates with other QoB terms. Due to the fact that the cloud provider enforces its
own SLA, and therefore, SeaClouds can not impose any penalty to the cloud provider,
the actions that make sense to be specified here are unilateral actions. The most
obvious action of this type is a migration of the modules in the affected cloud
provider to another cloud provider. In SeaClouds, this is achieved with a replanning
trigger generated by the SLA Service.

6.2. Implementation & SLA Service API

The SLA Service API provides the methods to manage templates and agreements of
the two SLA levels identified in SeaClouds. The code of the SLA service is found at:
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/sla

6.2.1. Terminology

e Agreement: document that describes the delivered service, the involved
parties, and the non-functional properties that the service must fulfill.

e Agreementld: Unique identifier of the agreement.

e Template: document that describes a provider offer. Actual agreements may
be based on templates.

e Templateld: Unique identifier of the template.

e Guarantee term: Term that express service guarantees in an agreement,
define how guarantees are assessed and which compensation methods apply
in case of meeting or violating the service guarantees.

e Serviceld: Identifier of a service being delivered. In the case of Customer -
Application Provider level, it corresponds to the application id; otherwise, it
corresponds to an identifier of the actual service offered by the cloud
provider.

25



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

e Resource: Identifier of the entity using a service. Used in the Application
Provider - Cloud Provider level, corresponding to the moduleld(s) being

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

hosted.
e Enforcement: Process that evaluate the guarantee terms are being fulfilled.

e QoB (Quality of Business): express a constraint over business-related metrics
and the penalties and recovery actions that are applied in case this constraint

is violated.
6.2.2. Interface
ID getAgreement
Description | Retrieves the agreement identified by its id
Parameters e (Agreementld) Id, WS-Agreement Id of agreement
Response e (Agreement) WS-Agreement representation of agreement
ID getAgreements
Description | Retrieves all the agreements that match the filter
Parameters e (Providerld) provider, Id of a Provider
e (Serviceld) service, Id of a Service
e (Resourceld) resourceld, Id of a Resource
e (Consumerld) consumer, Id of a Consumer
e (Templateld) templateld, WS-Agreement template id of
agreements based on this template.
Response e (Agreement[]) WS-Agreement representation of
agreements matching the filter
ID createAgreement
Description Creates an agreement for a given application.
Parameters e (AAM) aam, Abstract Application Model of the application
e (DAM) dam, Deployable Application Model of the
application
Response o (Agreement[]) WS-Agreement (including generated
Agreementld) representation of the created agreements:
- 1agreement in Customer - Application Provider level
- n agreements in Application Provider - Cloud
Provider level, one per each cloud service used in the
plan.

26



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

Controlling

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

ID updateAgreement

Description Updates an existing agreement.

Parameters e (Agreement) description, WS-Agreement representation of
the agreement. It may be internally modified, so the
parameter should not be taken as the agreement finally
stored.

Response e (Agreement) WS-Agreement representation of the
agreement

ID terminateAgreement

Description | Changes an agreement state to "Terminated" and stops any

enforcement.

Parameters e (Agreementld) Id, WS-Agreement Id of agreement

Response

ID getTemplate

Description | Retrieves the template identified by its id

Parameters e (Templateld) Id, WS-Agreement Id of template

Response e (Template) WS-Agreement representation of template

ID getTemplates

Description | Retrieves all the templates that match the filter

Parameters e (Providerld) provider, Id of a Provider

e (Serviceld) service, Id of a Service
e (Template[]) WS-Agreement representation of templates
matching the filter

ID createTemplate

Description | Creates a template

Parameters e (Template) description, WS-Agreement representation of

27



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

the template. It may be internally modified, so the
parameter should not be taken as the template finally

stored.

Response e (Template) WS-Agreement representation of template
(including generated Templateld)

ID getAgreementStatus

Description Retrieves the status (violated, not violated) of service level

objectives and the overall agreement

Parameters e (Agreementld) Id, WS-Agreement Id of agreement

Response e (AgreementStatus) status of agreements and its respective
guarantee terms.

ID startEnforcement

Description | Starts the enforcement of an agreement

Parameters o (Agreementld) Id, WS-Agreement Id of agreement

Response e (Boolean) status of enforcement

ID stopEnforcement

Description | Stop the enforcement of an agreement

Parameters e (Agreementld) Id, WS-Agreement Id of agreement

Response e (Boolean) status of enforcement

ID createProvider

Description [ Creates a provider.

Parameters e (Provider) description, name and description of provider to
create

Response e (Provider) SLA Service representation of provider (including
generated Providerld)

ID getQoSViolations

28



sSseacLoubDsS

AGILITY AFTEr bePLoOYmMenT

Modelling Planning

D4.6 Prototype and detailed documentation
of the SeaClouds run-time environment

Controlling

Description | Get a list of QoS violations that match the filter
Parameters e (Agreementld) agreementid
e (Providerld) provider, Id of a Provider
e (Serviceld) service, Id of a Service
e (Resourceld) resourceld, Id of a Resource
e (xs:datetime[]) datelnterval, if provided, violation must be
in the interval.
Response e (QoSViolation[]) Violations matching the filter
ID getQoBViolations
Description | Get a list of QoB violations that match the filter
Parameters e (Agreementld) agreementid
e (Providerld) provider, Id of a Provider
e (Serviceld) service, Id of a Service
e (Resourceld) resourceld, Id of a Resource
e (xs:datetime[]) datelnterval, if provided, violation must be
in the interval.
Response e (QoBViolation[]) Violations matching the filter
ID receiveQoSViolation
Description | Notifies the SLA Service a QoS violation.
Parameters e (QoSViolation) violation, violation sent by the Monitor
Response
ID receiveHealingNotification
Description | Notifies the SLA Service that the Policy Action was already done.
Parameters e (Agreementld) agreementid
e (Policyld) policyld
e (QoSViolationld) violationid
Response

29



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

7. How to get and install the SeaClouds Integrated Platform

SeaClouds project has a Continuous Integration chain in place. This allows to have all
the binaries produced by each software component of SeaClouds to be always
available from:
https://oss.sonatype.org/content/groups/public/eu/seaclouds-project/

The consortium has identified Apache Brooklyn as the tool to easily deploy
SeaClouds. We currently support deployments against [Bring Your Own Nodes
(BYON)] and to all the laa$S provider supported by Apache jclouds®.

In the following subsections we show how it is possible to deploy the SeaClouds
platform both on a local computer and on the cloud.

7.1 Local Deployment

The deployment of SeaClouds on a local computer is supported to allow users
experimenting with the platform.

To simplify the creation of the nodes needed to deploy SeaClouds, a convenient
Vagrantfile has been created for the end-users. Make sure you have Maven(3.5.5+)%,
Vagrant® and Apache Brooklyn” installed, then:

mvn clean install -DskipTests

cd usage/installer/target/seaclouds-installer-dist/seaclouds-installer
pushd .

cd byon

vagrant up

popd

nohup ./start.sh &

tail -f nohup.out

Please make sure you have configured BROKLYN _HOME at least in the current
terminal.

This spins up a virtual environment, made up of 2 VMs, which are accessible at
"192.168.100.10° and '192.168.100.11°. Also, it starts up your instance of Apache
Brooklyn on your workstation, accessible at:

http://localhost:8081.

Please double-check in nohup.out the correct url.

Finally, copy and paste “seaclouds-on-byon” blueprint® to deploy the SeaClouds
platform on the 2 VMs created by Vagrant previously.

http://jclouds.org

https://maven.apache.org/

https://www.vagrantup.com/

A W N e

https://brooklyn.incubator.apache.org/

30



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modelifg  Plannitg. Gontroling of the SeaClouds run-time environment

7.2 Launching in the clouds

The previous deployment option has to be considered non-production ready: it is a
great way to start with SeaClouds with no effort and get familiar with the main
concepts. Of course, deploy SeaClouds on the cloud is more interesting if an
organization wants to support it in production.

By simply editing the location on the “seaclouds.yam/” blueprint®, it’d be possible to
deploy SeaClouds against any laaS provider supported by Apache Jclouds.

Remember to specify the target location. For example, instead of:

location:
byon:
user: vagrant
privateKeyFile: ~/git/seaclouds/seaclouds-distribution/seaclouds_id_rsa
hosts:
-192.168.100.10
-192.168.100.11

one could instead use:
location: jclouds:softlayer:ams01

To provision the 2 hosts on demand on the IBM SoftLayer cloud provider in the
datacenter in Amsterdam.

8. Conclusions

This document has been structured in two main topics, the first one introduced the
SeaClouds Architecture together with the Dashboard and API overview. Later, for
every runtime component, a description of the individual architecture as well as the
implementation API has been presented. Such implementation will be continuously
updated until the end of the project, following the continuous integration approach
we have adopted.

5https://github.com/SeaCloudsEU/SeaCIoudsPIatform/bIob/master/usage/instaIler/src/main/assembl
y/files/blueprints/seaclouds-on-byon.yaml

6https://github.com/SeaCloudsEU/SeaCIoudsPIatform/bIob/master/usage/instaIler/src/main/assembl
y/files/blueprints/seaclouds.yaml

31



seacLoubDs D4.6 Prototype and detailed documentation

AGILITY AFTEr bePLoOYmMenT

Modeling  Planning  Controling of the SeaClouds run-time environment

References

1. SeaClouds Project. Deliverable D4.5. Unified dashboard and revision of Cloud API
(SeaClouds Consortium), March 2015
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.5-

Unified dashboard and revision _of Cloud APIl.pdf

2. SeaClouds Project. Deliverable D3.3. SeaClouds discovery and adaptation
components prototype (SeaClouds Consortium), July 2015 (to be published)

3. SeaClouds Project. Deliverable D5.1.2. Integrated Platform (SeaClouds
Consortium), May 2015
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D5.1.2-
IntegratedPlatform.pdf

4. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds
Consortium), February 2015 (to be published).

5. Bootstrap: A framework for developing responsive, mobile first projects on the
web, http://getbootstrap.com/ 2015

6. Angular JS: HTML enhanced for web apps, https://angularjs.org/ 2015

7. SeaClouds Project. Deliverable D4.1. Definition of the multi-deployment and
monitoring strategies (SeaClouds Consortium), October 2014
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-

D4.1 Definition_of the multi-deployment _and_monitoring_strategies.pdf

8. Apache Brooklyn. https://brooklyn.incubator.apache.org/, 2014.

9. Apache jClouds. The Java Multi-Cloud Toolkit, https://jclouds.apache.org/, 2014.

10. Brooklyn YAML Blueprint Reference, http://brooklyncentral.github.io/v/0.7.0-
SNAPSHOT/use/guide/defining-applications/yaml-reference.html, CloudSoft, 2014.

11. SeaClouds Project. Deliverable D4.4. Dynamic QoS Verification and SLA
Management Approach (SeaClouds Consortium), April 2015 http://www.seaclouds-
project.eu/deliverables/SEACLOUDS-D4.4-

Dynamic_QoS verification_and SLA management_approach.pdf

12. SeaClouds Project. Deliverable D4.3 Design of the run-time reconfiguration
process (SeaClouds Consortium), February 2015 http://www.seaclouds-
project.eu/deliverables/SEACLOUDS-D4.3-Design_of the run-
time_reconfiguration process.pdf

13. MODACIouds Project github - Data Collectors

32



AGILITY AFTEr bePLoOYmMenT

seacLoubs D4.6 Prototype and detailed documentation
Modeling  Planning  Controling of the SeaClouds run-time environment

https://github.com/deib-polimi/tower4clouds/tree/master/data-collector-library

14. MODACIlouds Project github - Tower 4Clouds
https://github.com/deib-polimi/tower4clouds/tree/master/manager/manager-api

15. MODACLouds Project. Deliverable 5.2.2. MODACloudML QoS abstractions and
prediction models specification — Final version
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.2.2 -
MODACloudMLQoSAbstractionsAndPredictionModelsSpecificationFinalVersion.pdf

16. Web Services Agreement Specification (WS-Agreement)
http://www.ogf.org/documents/GFD.192, Open Grid Forum, 2011

17. Guide to WS-Agreement Language, Open Grid Forum https://packcs-
e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html, 2014.

33



