seaclLOoOUuUDS

AGILITY AFTer DePLoyYymenT

Modelling Planning Controlling

SeaClouds Project
D5.1.2 — Integrated Platform

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based
applications

Call identifier FP7-1CT-2012-10

Grant agreement no. 610531

Start Date 1* October 2013

Ending Date 31* March 2016

Work Package WP5 Integration, infrastructure delivery and GUI
Deliverable code D5.1.2

Deliverable Title Final design of the User Interface

Nature Integrated Platform

Dissemination Level Public

Due Date: M19

Submission Date: 8th of May 2015

Version: 1.0

Status Final

Author(s): Elisabetta Di Nitto (Polimi), Roman Sosa (ATOS), Marc Oriol (UPI),

Simone Zenzaro (UPI), Javier Cubo (UMA), Andrea Turli
(Cloudsoft), Diego Pérez (Polimi), Dionysis Athanasopoulos
(Polimi), Jose Carrasco (UMA)

Reviewer(s) Ernesto Pimentel (UMA), Francesco D’Andria (ATOS)

seacLouDs

AGILITY AFTEr DEePLOYMEeNT

Modelling

Planning Controlling

Dissemination Level

D5.2.2 — Final design of the User Interface

Project co-funded by the European Commission within the Seventh Framework

Programme

Public

X

Restricted to other programme participants (including the Commission)

Restricted to a group specified by the consortium (including the Commission)

Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors, reviewers
0.1 8/04/2015 | ToC and distribution of work Elisabetta Di Nitto
0.2 17/04/2015 | Section 2, 3 and 4 mainly, and initial | Diego Pérez, Elisabetta Di Nitto, Roman Sosa,
version in Sections 5 and 6 Marc Oriol, Javier Cubo, Andrea Turli, Dionysis
Athanasopoulos
0.3 22/04/2015 | Added SLA Agreement Roman Sosa
0.4 23/04/2015 | Updates to Sections 2, 3 and 5. Writing [Elisabetta Di Nitto
of Section 7
0.5 24/04/2015 | Updates to Section 5 Marc Oriol, Jose Carrasco
0.6 26/04/2015 | Revision of the whole document Elisabetta Di Nitto
0.7 28/04/2015 | Revision of Executive Summary, Sections | Javier Cubo, Jose Carrasco, Diego Perez, Marc
3 and 5, Modifications in the example | Oriol, Simone Zenzaro, Dionysis
application Athanasopoulos
0.8 28/04/2015 | Updates to Section 5.4 Roman Sosa
0.9 29/04/2015 | Checking and suggestions in Sections 2, | Javier Cubo, Elisabetta Di Nitto, Diego Pérez,
3, 5, creation of Sections 1 and 8, and | Marc Oriol, Simone Zenzaro, Jose Carrasco
revision of Section 1
0.10 30/04/2015 | Updates to Section 5 Elisabetta Di Nitto, Diego Perez
0.11 04/05/2015 | Final review by the authors Elisabetta Di Nitto, Marc Oriol, Diego Perez,
Javier Cubo
0.12 06/05/2015 | Comments by reviewers Ernesto Pimentel, Francesco D’Andria, Javier
Cubo
1.0 08/05/2015 | Final changes based on reviewers’ | Elisabetta Di Nitto, Diego Perez
comments

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

Table of Contents

TabIE Of CONTENTS ..ottt st e e st e e e eab et e s e bb e e e sabeeeeeanneeeaas 3
EXECUTIVE SUMMIAIY .ot e e e e e e e e e e et et ettt eteebs b s e e eeeeeeeeeeeeeeeaennnes 5
S (311 o To [o1 { [o F R O PP OPPPPOPPPPOPPPPON 7
1.1 Scope and outcome of the Deliverable........ccccooviiiiiiiiiiii e 7
1.2 Structure of the dOCUMENT ..ot e 7
I T 1S o Yol o 1Y/ o PRSPPI 8

2 Foreseen integration plan at M8 and current situationcceevvviiiieee i 8
3 Integrated SeaClouds components and interaction among them............cccooeeiicciiiiivieeeen, 10
S R O V=T VTP P OPPPPPPPP 10
3.2 Main SeaClouds COMPONENTESciiiiiiiiiete ettt e eriire e e e e e e e s s sbrre e e e s ssbraeeeesssssaeeeeeas 12
3.3 TOSCA YAML ObjJect MOElccoiuiiiiiiiiiiiieeee e 14

4 How to get and install the SeaClouds Integrated Platformcccccceevviiiieeiiiniiiieeec e, 15
R W Yor- W D 1=T o] (o] V74 0 1= o | SO PP PPPP 15
4.2 Launching in the ClOUASciiiiiiiiiie e e e e a e e s s e aaaee s 16

5 How to use the SeaClouds Integrated Platform: an example......cccceviieeiiiniiiiieee e 17
5.1 Description of the Application EXamplecc.uuviiiiiiiiiiieieieec et 17
5.2 Definition of the Abstract Application Model..........cccveiiiiiiiiiiiiii e 19
5.3 Matchmaking and optimization.........cueiiiiiiiiiiiie e e e 22
5.3.1 MatChmaking PrOCESS .. cceiiiieiiie ettt ettt st e e st e e st e e sabee e sabeeesabeeesabeeenas 23
5.3.2 The Optimization PrOCESS.cccueiiiiiieiiie ettt ettt ettt e sb e st e e st e e st e e e sabee e sabeeesnbeeesabeeenns 24

5.4 Definition of Monitoring Rules and SLA...........uiiiiiiiiiee e 29
5.5 Definition of the Deployable Application Modelccccovviiiiiiiiniiiieee e 32
5.6 Executing and monitoring the application.........ccceveiiiiiiiiiiiiiiee e 40

6 Update on tools and practices for continuous integration and quality assurance................... 41
7 Updated integration Plan ...t e e e ra e e e s e 42
8 CONCIUSIONS ...ttt ettt e st e e e bt e e s bt e e s bt e e e bb e e e s nbe e e sbbeeeenaneeesannes 43

Y =TT a Lol LT PO TR PPRRRPPRRN 44

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

List of Figures

FIGURE 1: RELEASE AND INTEGRATION PLAN DEFINED AT M8 .uuiutiiiiiiiieitieeee ettt et stsenstnseneeaenessstsensensensens
FIGURE 2: CURRENT SEACLOUDS INTEGRATED PLATFORM ARCHITECTURE

FIGURE 3: APPLICATION CHAT TOPOLOGY .euitiiiiiiiiieittt ettt et et et sa st seas et eaeaesa st sanstnsentenstnseneesseressnstnsensensenns
FIGURE 4: UML DIAGRAM OF MODACLOUDS-BASED DEPLOYMENT MODEL FOR THE APPLICATION EXAMPLE....... 38
FIGURE 5: SEACLOUDS FINAL INTEGRATED PLATFORM Leuiiitie ittt ettt ettt et et e e st e ene s s eneeaaeasa st saneeneenns 42
List of Tables

QLI = 1 X O {0 1\ 1Y/ T 8
TABLE 2: NODE_TEMPLATE GRAMIMAR ...eeti ittt ettt ettt e e e e ettt e s e e e e e et taaas s e e e e e aaba e e seaeeaebanseseeanesnnnseeaeees 20
TABLE 3: MONITORING RULES FOR THE APPLICATION EXAMPLEoeniiiieie ettt ettt ettt e e e e e sesenseneenns 31

TABLE 4: SLA FORWEB CHAT .ttt bbb s s e e e s s a e s e e e e s s aaaase s e e e as 32

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

Executive Summary

This deliverable is the first integrated platform developed within the SeaClouds project. This
document aims at accompanying the software prototype by offering information about: i)
the released and integrated components and their interactions; ii) the way the resulting
integrated platform can be installed by a user; iii) the way a user can exploit such platform
to compile, starting from an Abstract Application Model (AAM), the Deployable Application
Model (DAM), and can then deploy, monitor and check the SLA (Service Level Agreement) of
an example application. This document provides also an updated version of the integration
plan originally defined in Deliverable D5.1.1.

iﬁg%thgrEE D5.2.2 - Final design of the User Interface _

Modelling Planning Controlling

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

1 Introduction

1.1 Scope and outcome of the Deliverable

This deliverable is constituted by the first version of the SeaClouds Integrated Platform plus the
following elements:

1. This accompanying document that aims at guiding users of the SeaClouds Integrated
Platform through the identification of the main components of the current platform, the
relationships between them and through their download, deployment, installation and
execution phases.

2. The artifacts that are needed to deploy and execute the platform (see Section 4).

3. An application example, together with the artifacts needed to describe it (AAM and ADP
in the TOSCA specification, and DAM in the TOSCA and CAMP format), the cloud offers
that match the application, the associated monitoring rules and the SLA service (see
Section 5).

Since the project is pursuing a fully open source approach, all software is released with an
Apache 2.0 license and has been made available since the beginning of the development on
github. Thus, all above material can be downloaded from the SeaClouds Platform github
repository https://github.com/SeaCloudsEU. The current document is made available on the

same repository and will be continuously updated to constitute a live documentation while the
SeaClouds Platform will be evolved.

The SeaClouds Integrated Platform follows the architecture defined in Deliverable D2.4 [1] with
some simplifications that will be addressed in the next releases (see Sections 3 and 7).

1.2 Structure of the document

This document has the following structure:

e Section 2 describes the current status of the SeaClouds Integrated Platform in
comparison with the integration plan foreseen at M8, and also mentioning the first
prototype developed at M12.

e Section 3 describes the components that currently belong to the SeaClouds Integrated
Platform and the interaction among them.

e Section 4 provides an overview of the procedure to be followed in order to download,
deploy and run the SeaClouds Integrated Platform.

e Section 5 shows how the user can exploit the Integrated Platform to deploy an example
application.

e Section 6 presents the tools and practices for continuous integration and quality
assurance that we have followed for delivering the SeaClouds Integrated Plaform.

seacLouDs

AGILITY AFTEr DEePLOYMEeNT

Modelling Planning

Controlling

D5.2.2 — Final design of the User Interface _

e Section 7 presents the updated integration plan that will lead us toward the finalization
of the Integrated Platform.
e Finally, Section 8 provides some conclusions.

1.3 List of Acronyms

Here we list the different acronyms that will be used in this document.

Acronym Definition
Saa$s Software-as-a-Service
Paa$S Platform-as-a-Service
laaS Infrastructure-as-a-Service
QoS Quality of Service
QoB Quality of Business
SLA Service Level Agreement
GUI Graphical User Interface
API Application Programming Interface
AAM Abstract Application Model
DAM Deployable Application Model
ADP Abstract Deployment Plan
URI Uniform Resource Identifier
YAML YAML Ain’t Markup Language
XML eXtensible Markup Language
REST Representation state transfer
LAM Live Application Model

Table 1: Acronyms

2 Foreseen integration plan at M8 and current situation

The current section shortly provides an overview of the history of the SeaClouds Integrated

Platform from the initial integration plan defined at M8 to the first proof of concept
demonstrated during the review at M12 and described in D3.1 [2] and D4.1 [3] (with a general
overview also presented in D5.4.1 [4]) to the current situation at M19.

§G?\Tuam$el!738ul;ylrr2rws D5.2.2 - Final design of the User Interface _

Modelling Planning Controlling

’ GUI }
-
]_‘_ M24
SLA service |
M18
i Pl -
Deployer ‘ anner
piloy J -
| M12, M18, M22 | M12, M18, M22 |
E / ¥
' Discoverer
> Monitor ’
> e | M12, M18, M22 |
M22 y ;

l

{ Existing Cloud |

) 4

infrastructures |

Figure 1: Release and integration plan defined at M8

Figure 1 describes the SeaClouds release and integration plan as it has been defined at Project
Month M8 in Deliverable D5.1.1 [5]. According to the plan, at M18, the integrated platform
should have included the following components:

e The Discoverer in charge of supporting the discovery of cloud services to be used in the
resource allocation phase.

e The Planner supporting the design of a multi-cloud application and the definition of the
corresponding resource allocation plan.

e The Deployer in charge of deploying the application according to the allocation plan
defined by the Planner.

e The SLA Service in charge of verifying the fulfillment of Service Levels Agreements.

With respect to this original plan we have decided to:

e Give priority to the GUI runtime with respect to the Discoverer as the GUI is needed to
support users in properly managing the lifecycle of a multi-cloud application. The

iﬁigehggm?ms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

SeaClouds GUI is divided in two parts, the design-time user interface dedicated to
support the design of an application topology and the Dashboard supporting the
management of deployment and the interaction with the runtime components. The
current SeaClouds Integrated Platform includes the Dashboard while the design-time
GUIl is under development.

e Offer a full-fledged Monitoring Platform in order to prepare the stage for the next step
in the project that concerns the development of the reconfiguration and replanning
actions presented in Deliverables D4.3 [6] and D4.4 [7]. To this end, the first proof of
concept prototype we demonstrated during the review was already including the simple
Monitor component presented in D4.1. The current SeaClouds Platform encapsulates
the monitoring platform developed as part of another European project, MODAClouds
(www.modaclouds.eu). As already discussed in other deliverables, this platform

supports monitoring in a multi-cloud context. It allows collection of data to be
customized depending on the specific application at hands. Moreover it offers a
monitoring rule language that supports the definition of conditions on the monitoring
data that can indicate the presence of a problem and the implementation of reaction
actions in response to this situation.
As mentioned above, initial versions of the Planner, Deployer, and Monitor supported by the
initial design and implementation of the Dashboard have been already presented during M12
review, also with an initial version of the SLA Service component. The SeaClouds Integrated
Platform includes consolidated versions of all these components. The functionality offered by
this platform is described in the next section together with the corresponding components.

3 Integrated SeaClouds components and interaction among them

3.1 Overview

The currently available SeaClouds Integrated Platform offers the following functionality:

® Planning functionality, that is, starting from an Abstract Application Model (AAM), which
at the moment is assumed to be defined outside the platform, the Planner is able to
define a Deployable Application Model (DAM) that includes information on the optimal
cloud resources to be used for the application at hands.

® Deployment functionality, that is, based on the DAM, the Deployer is able to install and
run the application exploiting some cloud resources. At the moment the resources
available are of 1aaS kind while in the next release of the platform we will integrate the
mechanisms to support interaction with PaaS. Together with the application, the
Deployer installs, when needed, the Data Collectors components that support the
monitoring activity.

iﬁigehggnems D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

® Monitoring functionality, that is, based on monitoring rules that are assumed, for the
moment, to be generated by the application designer or operator, the Monitoring
Platform is able to connect to the deployed Data Collectors and is able to acquire data
and reason on them. In the next release of the platform the monitoring rules will be
automatically generated by the Planner based on the Quality of Service constraints the
developer will incorporate into the AAM and on the actual cloud resources that will be
selected for the application.
® SLA management functionality, that is, based on an SLA that is assumed, for the
moment, to be manually generated by the designer, the SLA Service is able to connect
to the Monitoring Platform and, through it, it is able to receive the monitoring
information needed to identify SLA violations. Such violations are shown through the
Dashboard.
The whole set of functionality is orchestrated by the Dashboard as highlighted in Figure 2. This
figure simplifies the final architecture presented in D2.4 as it describes the situation of the
current integrated platform.

The following subsections describe each of the components of the M19 Integrated Platform
highlighting the current dependences to other components (new dependencies will be
implemented in the next version of the platform), the external libraries being used, the license
associated to the component, the repository, and the kind of API offered by the component.

‘ Dashboard / SeaClouds API ‘

l ; A
3.3| Agreement N : 7
T 31 confirmed Deployable octallation Busmelss SLA info —_—
1 2 Application Model onitor
Abstract Deployable PP 7
Application Application ¢ ‘—> SLA Service _I[(relag(;\é/r
Model Model
l Deployer | SLA Manager | €<— alerts
; | SLA Generator | 6
Planner Deployer Engine Live T
—> Model Subscription 4
Matchmaking Cloud adapters to rules
Optimizer Monitor
3.2 Monitoring
t . .
s Data | | Monitoring
Analyzer Manager
4.1

App Deployment and
Data Collector installation
~

] 3 . [o v
Application (} _EH Application g Monitoring
t module | (module event

e | . |
Collector Collector

Figure 2: Current SeaClouds integrated platform architecture

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

3.2 Main SeaClouds Components

All SeaClouds components have been released under the Apache 2.0 license and are available
at the following URL https://github.com/SeaCloudsEU/SeaCloudsPlatform. The table below
offers information about the programming language adopted for developing the component,

the external libraries that have been used (if any), the dependencies with other components
(we assume that a component depends on another if it uses the interface of the second
component), the software interface used by the component. A short description of each
component is detailed in the subsections below.

Component name Programming External libraries | Dependencies with | Offered software
language used other components interfaces
Dashboard HTMLS5, JavaScript Bootstrap Iibrary1 Planner, Deployer, | REST API
Angular Js? Monitor, SLA Service
Planner Java Apache Tomcat, REST API

json-simple 1.1.1, | Matchmaker,
sifdj-api (v 1.6.6) Optimizer, Dashboard

logger

Deployer Java Apache Brooklyn3 Planner, Monitor REST API

SLA Service Java Monitor, in particular, | REST API
jersey-1.18, spring- | addObserver and
3.2.4, jpa-2.0-api, [sendMonitoringRulel
jackson-2.4.5, qos- | nstalled functions

models-2.4
Monitor Java monitoring- Deployer, SLA | REST API
manager.jar4 Service, and

data-collector-1.3- Dashboard
snapshot.jar5
fuseki-server.jar6
rsp-services-
csparql.jar7

! http://getbootstrap.com

% https://angularjs.org

® https://brooklyn.incubator.apache.org/

4 https://github.com/deib-polimi/modaclouds-monitoring-manager
5https://github.com/imperial—modaclouds/imperiaI—modaclouds—mvn—repo/tree/master/release
s/imperial/modaclouds/monitoring

6 http://archive.apache.org/dist/jena/binaries

7 https://github.com/deib-polimi/rsp-services-csparg|

iﬁigehggngms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

Dashboard

The main goal of the SeaClouds Dashboard is to provide a simple interface to the
application administrator. The Dashboard is, in fact, focused on supporting the deployment
and execution of multi-cloud applications. It is going to be integrated with the design-time
GUI described in Deliverable D5.2.2 [8], more focused on the front-end. Thanks to this
integration, it will support the whole lifecycle of an application, starting from the definition
of its structured to the discovery and allocation of cloud resources and then to deployment
and execution.

The Dashboard Component is a Web application that runs on any browser. It relies on the
REST API to interact with the other components.

Planner

The planner is in charge of generating deployment plans from the Abstract Application
Model. To do so, the planner invokes first the matchmaker, which finds a list of suitable
cloud offerings for each module of the Abstract Application Model. And then, to the
optimizer, which generates a list of abstract deployment plans using optimization problem
techniques

The planner is also in charge of generating replans if a violation of the QoS/SLA occurs, using
the same components. Its stable version is available under the sub-repository
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/planner.

The planner is organized in the two main sub-components that are described below.

Matchmaker: The Matchmaker is in charge of matching the different modules of the
Abstract Application Model (AAM) with cloud offerings for both laaS and PaasS.

Optimizer: The Optimizer creates an optimization problem whose solution is a set of
ADP, that is, the combination of cloud resources and number of instances that satisfy
the best the application requirements. To create the optimization problem constraints,
it uses the modules in the AMM, their relationships and their QoS properties, the set of
suitable cloud offers for each module provided by matchmaker. To create the objective
function it uses the application QoS requirements. To find (sub-)optimal solutions of the
optimization problem, it implements search-based algorithms. Besides being part of the
Planner, the Optimizer can also be used in isolation through its REST API.

Deployer

The Deployer is composed of several elements (more details in Deliverable D4.1 [3]). The
main element is the Deployer Engine, which receives a Deployable Application Model (DAM)
through its Deployer APl and executes it. As the Deployer Engine is cloud-agnostic, it is able
to deploy applications on different cloud providers using multiple Cloud Adapters (PaaS and
laaS levels), which are part of the Deployer component itself. The DAM contains the
necessary information to deploy an application over a set of cloud providers (locations).
More specifically, the DAM describes the application topology detailing the application

iﬁigehggnems D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

components, the relationships, the dependencies, features, constraints, the target
providers, etc. Therefore, the DAM includes an embedded deployment plan for carrying out
the deployment based on the modules dependencies and relations.

The Deployer processes the DAM and uses the necessary operations that allow to manage
the target locations and the cloud resources in an homogeneous way. Then, the application
modules are distributed and the relationships are established, archiving the desired
application behaviour.

The Deployer provides the necessary operations or methods, through the REST API, allowing
the post-deployment management like changing the application status (e.g., stop, pause,
restart) or performing entity-specific actions (e.g., scale up/down). Moreover, the Deployer
maintains the model of the current application deployment status called Live Application
Model (LAM).

SLA Service

The SLA Service represents the component responsible for generating and storing the
formal documents describing electronic agreements between the parties involved in
SeaClouds: customers, application providers and cloud providers. At runtime, the
component is in charge of supervising that all the agreements are respected.

The SLA Service exposes the basic functionalities of handling providers, templates and
agreements, and searching for violations and penalties, through a REST interface. It also
offers the possibility to push events, such as violations and penalties, to subscribed
components. The code of this component is available here
https://github.com/SeaCloudsEU/sla-core.

Monitoring Platform

SeaClouds monitoring platform encapsulates and extends the functionality offered by
MODACIouds monitoring platform [9]. The latter platform uses four core components, the
Monitoring Manager, the Knowledge Base, the Data Analyser, and one or more Data
Collectors. Further details about these components are provided in [10].

To exploit the functionality offered by SeaClouds monitoring platform, the SeaClouds
components (e.g., Planner) should interact with the internal components of the monitoring
platform, a.k.a., MODAClouds components. To reduce the coupling between the external
and the internal components, we adopt the mediator design pattern. Based on this pattern,
the interaction between components and the necessary logic is encapsulated by a mediator
component, which we call Controller.

3.3 TOSCA YAML Object Model

Besides the main components described in the previous section, the SeaClouds Platform
includes a library, the TOSCA YAML Object Model, that encapsulates all various SeaClouds
models (i.e. cloud offerings, AAM, ADP, DAM and Live Model) and is going to be used by almost

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

all SeaClouds components to interact with these models and transform them into a TOSCA
YAML specification (and vice versa).

More specifically, the library is written in Java and is available in the following sub-repository
https://github.com/SeaCloudsEU/tosca-parser. It is released, as all other parts of the SeaClouds
platform under the Apache 2.0 license and uses the following pre-existing libraries Guava
18.0and Snake-YAML 1.15.

4 How to get and install the SeaClouds Integrated Platform

SeaClouds project has a Continuous Integration chain in place (Section 6 details it). This allows
to have all the binaries produced by each software component of SeaClouds to be always
available from https://oss.sonatype.org/content/groups/public/eu/seaclouds-project/.

The consortium has identified Apache Brooklyn as the tool to easily deploy SeaClouds. We
currently support deployments against [Bring Your Own Nodes (BYON)] and to all the laaS
provider supported by Apache jclouds®.

In the following subsections we show how it is possible to deploy the SeaClouds platform both
on a local computer and on the cloud.

4.1 Local Deployment

The deployment of SeaClouds on a local computer is supported to allow users experimenting
with the platform.

To simplify the creation of the nodes needed to deploy SeaClouds, a convenient Vagrantfile has
been created for the end-users. Make sure you have Vagrant® and Apache Brooklyn® installed,
then:

cd $HOME

git clone git@github.com:SeaCloudsEU/seaclouds-distribution.git
cd seaclouds-distribution

./setup

Please make sure you have configured BROKLYN_HOME at least in the current terminal.
vagrant up

This spins up a virtual environment, made up of 2 VMs, which are accessible at

8 http://iclouds.org
9 https://www.vagrantup.com/
1% https://brooklyn.incubator.apache.org/

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

"192.168.100.10" and "192.168.100.11".

Start Apache Brooklyn
nohup $BROOKLYN_HOME/bin/brooklyn launch &

This starts up your instance of Apache Brooklyn on your workstation, accesible at
http://localhost:8081.

Please double-check in nohup.out the correct url.

Finally, copy and paste SeaClouds blueprint'! to deploy the SeaClouds platform on the 2 VMs
created by Vagrant previously.

4.2 Launching in the clouds

The previous deployment option has to be considered non-production ready: it is a great way
to start with SeaClouds with no effort and get familiar with the main concepts. Of course,
deploy SeaClouds on the cloud is more interesting if an organization wants to support it in
production. By simply editing the location pre-specified on the seaclouds blueprint, it'd be
possible to deploy SeaClouds against any laaS provider supported by Apache Jclouds

For example, instead of:

location:
byon:
user: vagrant

privateKeyFile: ~/git/seaclouds/seaclouds-distribution/seaclouds_id_rsa
hosts:

- 192.168.100.10

- 192.168.100.11

one could instead use:

location: jclouds:softlayer:ams01

To provision the 2 hosts on demand on the IBM SoftLayer cloud provider in the datacenter in
Amsterdam.

n https://github.com/SeaCloudsEU/seaclouds-distribution/blob/master/seaclouds.yaml

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

5 How to use the SeaClouds Integrated Platform: an example

The software application here considered for illustrating SeaClouds behavior is brought from
Apache Brooklyn deploying tutorial [11]. This application is part of Brooklyn blueprint and
provides enough complexity to exemplify the current Seaclouds capabilities. In the following
subsections we describe the functionality and structure of the application (Section 5.1), then
we define the corresponding AAM (Section 5.2) and show how, starting from this AAM, the
matchmaking and optimization process works (Section 5.3), then we describe the monitoring
rules and the SLA associated to the application (Section 5.4), the DAM associated to the
application (Section 5.5) and, finally, the way the application is executed and monitored
(Section 5.6).

5.1 Description of the Application Example

The application example implements a simple web chat room. Concretely, users can send
messages providing their name and the message text. These messages are stored in a database
and they are shown to all the chat users. A user can leave the room and, when she/he
eventually returns, can still see the previously sent messages. The software architecture of the
application consists of the following types of modules.

e A web interface consisting of three different web pages: a welcome page, a page that
lists links to the provided application functionality, and a chat page to interact with the
business logic.

® An external message database.

Web interface is packaged in a .war (Web application ARchive) file chat-
webApplication.war'® which uses an external database to store and retrieve students’
information.

The application deployment executes on top of application server (e.g., Tomcat 7) to deploy
chat-webApplication.war and requires the Message Database module for its data
persistence. In turn, Message Database module requires a MySQL database management
system.

Figure 3 shows the architectural topology of the application example.

12 http://search.maven.org/remotecontent?filepath=io/brooklyn/example/brooklyn-example-hello-world-sql-

webapp/0.6.0/brooklyn-example-hello-world-sql-webapp-0.6.0.war

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

/ Chat WebApplic ation

| > (Chat WebApplic ation)
" Message Database
.v’ (Message Database)
4 v

MySQL-RDBMS
(MySQL-RDBMS)

TomcatServer

/d*c\ (Tomc atApplic ationServer)

Figure 3: Application Chat topology

The application example is a preexisting one. Without using SeaClouds, someone willing to
deploy it on some cloud would need to go through the following steps:

e Select the cloud services to be used, assess that they fit the needs of the application,
and acquire these services from some cloud provider.

Assuming that we have selected a laaS cloud, start the virtual machines.

Configure and start an application server.

Configure and start a database management system.

Set up the Message database.

Configure the application to use the remote database.

® Deploy chat-webApplication.war on the application server.
The goal of SeaClouds with respect to this application example is to simplify all above work by
automatizing most of the steps or guide non-expert users where needed. Moreover, the goals
are also to i) ensure that the selected cloud resources are the optimal ones, given the
characteristics of the application and the trade-off between service characteristics and cost; ii)
monitor the performance of the application and make sure that, given the SLA offered by the
selected cloud provider, any violation is communicated to the operator.

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

In the next release of the SeaClouds platform, we will also tackle selection and usage of PaaS
services as well as the possibility to change the application deployment to deal with violations
of the SLA or of generic QoS parameters.

Application requirements

In order to demonstrate the ability of SeaClouds to manage application with technical and
quality requirements, we assume that the example application has the following requirements:

The database is MySQL 5.0 and needs 50GB of size.

The application server has to be able to execute Java.

The application availablity should be higher than 99.8%.

The application expected response time is lower than 2 seconds for an arrival rate of 50

messages per minute.
e The chat owner organisation expects to spend less than 200 Euros per month for

executing the application on a cloud.
For reasoning over response time requirements, we also provide the following information that
are assumed to be acquired by sturying the behavior of the application: each message sent
through the application GUI produces, on average, two queries to the database; in the testing
environment a request took in average 50ms to execute the code in the web interface and
30ms to execute a query to the database; the testing environment was composed of virtual
machines of type nhp cloud services.2xl.

5.2 Definition of the Abstract Application Model

Based on the Application Example described previously, we define the Abstract Application
Model in TOSCA YAML. While in the next release of the SeaClouds platform the user will be
guided through the definition of the AAM, at the moment, he/she has to define it manually.
The syntax used for the AAM TOSCA YAML is defined in D3.2 [12]. Below we provide a short
overview of such syntax and the present the AAM of the application example.

AAM TOSCA YAML syntax

The Abstract Application Model (AAM) is structured on two layers: The Deployment layer and
the Logic Layer.

The Deployment layer defines the modules of the application topology, which are represented
as node template. Anode template is of a specific node type. If the moduleis a
component to deploy, the node type identifies the type of the component (e.g.
seaclouds.nodes.Deploy.MySQL). If the module is the abstract service where these

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

components are to be deployed, the node type identifies the type of the service (in case of
a generic laaS, seaclouds.nodes.Compute).

For node templates of type seaclouds.nodes.Deploy.*, textual information (e.g.
credentials) are represented as attributes, whereas resources (e.g. configuration files) are
represented as artifacts. These components are required to be deployed in a service host,
which is represented as a host inthe requirements.

The logic layer is composed of the functionalities of the modules and the dependencies
between them. The functionalities are expressed also as node template using the
seaclouds.nodes.Logic type. The Logic nodes must have a host named requirement
which refers to the module implementing the functionality being described. The dependency
from functionalities provided by other modules in the application can be expressed using
requirement linking to other logic nodes with a relationship of the type
seaclouds.relationships.Uses. The Uses relationship has a property
average usage_ count which defines how many times the target functionality needs to be
used in average to provide the functionality being described.

In Logic nodes the user can also define two properties: gos requirements and
gos_info, that respectively specify the QoS requirements for the given functionality and the
benchmark information needed to compute them.

In Table 4 we depict the grammar of a node_template as defined in TOSCA YAML Simple Profile
specification [13]. Some of the elements are not yet exploited in the current version of the
platform, but will be considered in the future.

<node_template_name>:
type: <node_type_name>
description: <node_template description>
properties:
<property_definitions>
attributes:
<attribute_definitions>
requirements:
<requirement_definitions>
capabilities:
<capability_definitions>
interfaces:
<interface_definitions>
artifacts:
<artifact_definitions>

Table 2: node_template grammar

iﬁigehggnems D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

The AAM for the application example

Below we depict the AAM of the example. The node templates java ee server and
db define the computational services that the user writing the AAM is willing to acquire for the
application. MySQL server is being hosted on the db computational server as reported by the
specification of the third node template (mysgl server) under the requirements label,
while the java ee server is hosting a Tomcat installation as indicated by the fourth
note_template (tomcat server).mysgl server and tomcat server also include the
configuration information and the artifacts that are needed for their installation. db.query
and java ee server.operation define the logic layer of the application. They include
the QoS information that we have defined in Section 5.1 as well as the QoS requirements that
the user defines for the application. Finally, the relationship template defines the
connection between java ee server.operation and db.query and highlights the
fact that every time the application (java ee server.operation) uses the database
db.query, it performs two queries at a time (see the value for average usage count).

tosca_definitions_version: tosca_simple_yaml_ 1 0 ©

topology_template:
node_templates:

java_ee_server:
type: seaclouds.nodes.Compute

db:
type: seaclouds.nodes.Compute
properties:
disk_size: 50 GB

mysql_server:
type: seaclouds.nodes.deploy.MySQL
properties:
name: some_name
user: some_user
password: some_password
version: 5.5.37
artifacts:
- db_create: files/db_create.sql
type: tosca.artifacts.File
requirements:
- host: db

tomcat_server:
type: seaclouds.nodes.deploy.tomcatServer
properties:

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

version: 7.0.53
artifacts:

- war: chat-webApplication.war
requirements:

- host: java_ee_server

db.query:
type: seaclouds.nodes.lLogic
properties:
gos_info:
execution_time: 30 ms
benchmark_platform: hp_cloud_services.2xl
requirements:
- host: db

java_ee_server.operation:
type: seaclouds.nodes.lLogic
properties:
gos_info:
execution_time: 50 ms
benchmark_platform: hp_cloud_services.2xl
gos_requirements:
response_time: 2 sec
availability: ©.998
cost: 200 euros_per_month
workload: 50 req_per_mins
requirements:
- host: java_ee_server
- dependence_to_query:
node: db.query
relationship: java_ee_server.query.db

relationship_templates:
java_ee_server.query.db:
type: seaclouds.relationships.Uses
properties:
average_usage_count: 2

5.3 Matchmaking and optimization

The objective of the matchmaking and optimization steps is to define a proper allocation of
resources for the AAM. The following subsections describe the outcome of these two steps in

the case of the application example.

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

5.3.1 Matchmaking process

The Matchmaker is in charge of identifying a list of candidate cloud services for each of the
abstract services defined in the AAM. Particularly, it returns a map of <abstract service, list of
cloud offerings> where each of the cloud offerings in the list satisfies the technical and quality
requirements of the abstract service defined in the AAM. To do so, the matchmaker executes
the rules that identify the semantic comparison between properties (e.g. if the AAM requires a
laaS with storage features of at least 50 GB, all 1aaS that can provide 50 GB or more satisfy the
requirement). These rules are applied when comparing the properties between the AAM and
the cloud offerings. While at the moment the possible cloud offerings are predefined in a
configuration file, in the next version of the integrated platform, they will be returned by the
Discovery component that, in turn, will interact with initiatives such as Cloud Harmony to
acquire them.

The following set of cloud offerings fulfills the requirements of one of the abstract services of
our application example (particularly, we show the case of java_ee_server). The actual data in
the offering description is intended to be just an example and they are currently not real
information from the cloud providers as at the moment we lack the integration with real
information sources like Cloud Harmony. The cloud offerings specification is given in TOSCA
YAML. Each offer is expressed in terms of a node_template with a type that corresponds to the
specific cloud service and a set of properties that describe the offering.

tosca_definitions_version: tosca_simple_yaml_ 1 0 ©
topology_template:
node_templates:

aws-ec2:us-west-2:
type: seaclouds.nodes.Compute.Amazon
properties:
num_cpus: 4
availability: ©.98
cost: 0.928 usd_per_hour
performance: 62 ecb

seaclouds-hpcloud-region-b:

type: seaclouds.nodes.Compute.HP

properties:
num_cpus: 6
disk_size: 1 TB
scaling_vertical: auto
availability: ©.998
cost: 0.07 usd_per_hour
performance: 3 ecb

iﬁigehggngms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

hp_cloud_services.2xl:

type: seaclouds.nodes.Compute.HP

properties:
region: 'seaclouds.types.Locations.NV.US.LasVegas'
load_balancing: false
scaling_horizontal: 'no’
storage_file_system: 'ext4'
disk_type: 'sata’
local_storage: 470 GB
mem_size: 30 GB
num_cpus: 8
availability: ©.995
cost: 3.41 usd_per_hour
performance: 53 ecb

cl.xlarge:

type: seaclouds.nodes.Compute.Amazon

properties:
region: ‘'seaclouds.types.Locations.AM.US.OR.Portland’
operating_system: 'seaclouds.types.os.linux.ubuntu’
num_cpus: 8
mem_size: 7 GB
disk_type: 'sata’
local_storage: 2 TB
cost: 5.52 usd_per_hour
performance: 116 ecb
availability: ©.9995

5.3.2 The optimization process

The cloud offerings proposed by the Matchmaker is given to the Optimizer together with the
AAM. The Optimizer performs the optimization process implementing search-based algorithms
guided by meta-heuristics and provides a list of Abstract Deployment Plans (ADP).

The Optimizer associates each application module in the AAM of type “seaclouds.nodes.Compute”
with an actual laaS cloud offer. Additionally, it includes the appropriate initial number of
replicas to deploy for each module in order to satisfy both availability and response time
requirements. This is done for each of the ADP generated.

The following YAML code provides an instance of ADP of our application example assuming that
the suitable options provided by the Matchmaker for do module are the same as the illustrated
in Section 5.3.1 for java_ee_server module. This case illustrates that the search-based algorithm
within the Optimizer has found aws-ec2:us-west-2 as the most suitable laaS option to use as
host for java ee server module, and seaclouds-hpcloud-region-b as the most suitable option
for ab module. In both cases the ADP sets the number of instances needed to fulfill the both
availability and response time requirements under the expected workload to one.

seacLouDs

AGILITY AFTEr DEePLOYMEeNT

Modelling Planning Controlling

tosca_definitions_version: tosca_simple_yaml_ 1 0 ©

topology_template:
node_templates:

java_ee_server:
type: seaclouds.nodes.Compute.Amazon
properties:
location: aws-ec2:us-west-2
num_instances: 1

db:
type: seaclouds.nodes.Compute.HP
properties:
num_instances: 1
location: seaclouds-hpcloud-region-b
disk_size: 50 GB

mysql_server:
type: seaclouds.nodes.deploy.MySQL
properties:
name: some_name
user: some_user
password: some_password
version: 5.5.37
artifacts:
- db_create: files/db_create.sql
type: tosca.artifacts.File
requirements:
- host: db

tomcat_server:
type: seaclouds.nodes.deploy.tomcatServer

properties:

version: 7.0.53
artifacts:

- war: chat-webApplication.war
requirements:

- host: java_ee_server

db.query:
type: seaclouds.nodes.lLogic
requirements:
- host: db

java_ee_server.operation:
type: seaclouds.nodes.lLogic
properties:
gos_requirements:
response_time: 2 sec
availability: ©.998

D5.2.2 — Final design of the User Interface

iﬁigehggnems D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

cost: 200 euros_per_month
workload: 50 req_per_mins
requirements:
- host: java_ee_server
- dependence_to_query:
node: db.query
relationship: java_ee_server.query.db

relationship_templates:
java_ee_server.query.db:
type: seaclouds.relationships.Uses
properties:
average_usage_count: 2

These ADP work as basis for the generation of a DAM, since the final DAM includes additional

concepts as the account information to access the selected cloud as well as some configuration
information.

Implementation note

At the time in which this deliverable is being written, there is a syntactical mismatch between
the language understood by the Matchmaker and the one supported by the Optimizer. These
results in the fact that the AAM and the ADP manipulated by the Optimizer for the reference
application example are the ones listed below. Of course, the mismatch is purely syntactical
and is being fixed by the SeaClouds team.

AAM understood by the Optimizer

tosca_definitions_version: tosca_simple_yaml_ 1 ©
node_templates:

Chat_WebApplication:

type: seaClouds.nodes.WebApplication.Java

properties: {version: 7}

requirements: {host: tomcat_server, database_endpoint: mysql_server}

QoSpropertiesPOC:
executionTimeMeasuredInPOC: hp_cloud_services.2xl
executionTimePOC: 50.0
OpProfilePOC: {mysql_server: 2.0}

mysql_server:
type: seaclouds.nodes.Deploy.MySQL
properties: {version: 5.5.37}
requirements:
host: seaclouds.nodes.Compute
constraints:

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

localStorage: {greater_or_equal: 50}
suitableServices:
- aws-ec2:us-west-2
- seaclouds-hpcloud-region-b
- hp_cloud_services.2xl1
- cl.xlarge
QoSpropertiesPOC:
executionTimeMeasuredInPOC: hp_cloud_services.2xl
executionTimePOC: 30.0

tomcat_server:
type: seaclouds.nodes.deploy.tomcatServer
capabilities:
host: seaclouds.nodes.WebApplication.Java
version: 7.0.53
requirements:
host: seaclouds.nodes.Compute
constraints:
suitableServices:
- aws-ec2:us-west-2
- seaclouds-hpcloud-region-b
- hp_cloud_services.2xl
- cl.xlarge
QoSrequirementsPOC:
availabilityPOC: ©.998
responseTimePOC: 2000.0
workloadPOC: 50.0
costPOC: 200.0

Cloud Offer description format understood by the Optimizer

tosca_definitions_version: tosca_simple_yaml_ 1 0 ©
node_templates:

aws-ec2:us-west-2:
type: seaclouds.nodes.Compute.Amazon
properties:
cpuCores: 4
availabilityPOC: ©.98
costPOC: ©0.928
performancePOC: 62

seaclouds-hpcloud-region-b:

type: seaclouds.nodes.Compute.HP

properties:
cpuCores: 6
disk_size: 1 TB
scaling_vertical: auto
availabilityPOC: ©.998
costPOC: 0.07
performanceP0OC: 3

hp_cloud_services.2xl:
type: seaclouds.nodes.Compute.HP
properties:
region: ‘'seaclouds.types.Locations.NV.US.LasVegas'

?G?\TuaArgeE—DngdrEst D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

load_balancing: false

scaling_horizontal: 'no
storage_file_system: ‘'ext4’
disk_type: ‘'sata’
local_storage: 470 GB
mem_size: 30 GB

cpuCores: 8
availabilityPOC: ©.995
costPOC: 3.41
performancePOC: 53

cl.xlarge:

type: seaclouds.nodes.Compute.Amazon

properties:
region: ‘'seaclouds.types.Locations.AM.US.OR.Portland’
operating_system: 'seaclouds.types.os.linux.ubuntu’
cpuCores: 8
mem_size: 7 GB
disk_type: ‘'sata’
local_storage: 2 TB
costPOC: 5.52
performancePOC: 116
availabilityPOC: ©.9995

latencyExternalPOC: 200.0
latencyInternalPOC: 2.0

ADP produced by the Optimizer

tosca_definitions_version: tosca_simple_yaml_ 1 ©
node_templates:

Chat_WebApplication:

type: seaClouds.nodes.WebApplication.Java

properties: {version: 7}

requirements: {host: tomcat_server, database_endpoint: mysql_server}

QoSpropertiesPOC:
executionTimeMeasuredInPOC: hp_cloud_services.2xl
executionTimePOC: 50.0
OpProfilePOC: {mysql_server: 2.0}

mysql_server:
type: seaclouds.nodes.Deploy.MySQL
properties: {version: 5.5.37}
requirements:
host: aws-ec2:us-west-2
instancesPOC: 1
QoSpropertiesP0OC: {
executionTimeMeasuredInPOC: HP.compute.standard.medium, executionTimePOC: 30.0}

tomcat_server:
type: seaclouds.nodes.deploy.tomcatServer

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

capabilities: {host: seaclouds.nodes.WebApplication.Java, version: 7.0.53}
requirements:
host: seaclouds-hpcloud-region-b
instancesPOC: 1
QoSrequirementsPOC: {
availabilityPOC: ©.998, responseTimePOC: 2000.0, workloadPOC: 50.0,
costPOC: 200.0}

5.4 Definition of Monitoring Rules and SLA

Another step in the interaction of SeaClouds components is related to the definition of the
required monitoring rules and SLA. In particular, the Dashboard interacts with the Monitor and
the SLA Service for defining the monitoring rules and the SLA, respectively.

Concerning the definition of monitoring rules, they generally specify the monitored entities
(e.g., virtual machines), the kind of collected data (e.g., the application response time), the
aggregation way of collected data, monitoring actions, and under which conditions they will be
performed (logical expressions applied on monitoring data). The information included in a
monitoring rule is modeled by the XML schema, presented in [7]. Based on this model, the
monitoring rules defined for checking the delivered quality of the application example, are
presented in the following of the section.

SLA agreements are formal documents describing electronic agreements between the parties
involved in SeaClouds: customers, application providers and cloud providers. In the scope of the
project, they do not aim at representing a contractual relationship.

SLA agreements describe the service that is delivered, its functional and non-functional
properties, and the duties of each party involved. The SLA agreements in SeaClouds follow the
schema defined in the WS-Agreement specification [14], an open standard specifying a
language and a protocol for creating SLAs.

An SLA agreement, based on this WS-Agreement schema, is presented in the following section.
Monitoring Rules for the Application Example

Based on the previously specified requirements of the application, the metrics, required for
checking the delivered quality by the application, are the response time and the availability of
the application.

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

To define the target monitoring entities of these rules, we adopt the ones included in the

MODAClouds monitoring ontology™.

In particular, the main entities of the MODAClouds
monitoring ontology are the CloudProvider, the VM, the Internal Component, and the Method
entities. The first entity represents a cloud provider that hosts the whole or a part of an
application. The second entity represents a virtual machine and is further characterized by the
number of CPUs, reserved by this virtual machine. An Internal Component entity represents the
whole or a part of an application. Finally, a Method entity is used for capturing the notion of a

method of the source code of an application.

The monitoring rules for the application example are provided in Table 3. In detail, the first rule
calculates the average response time of the application methods. In this rule, it is used the
entity Method of MODACIouds monitoring ontology (monitoredTarget class="Method”), the
Average as an aggregation function (aggregationFunction name="Average”), and the Method as
a grouping class, based on which the aggregation will be performed (groupingClass= "Method”).
It is also specified a proper condition over the value of the average response time, which checks
whether this value is lower than two seconds.

In a similar vein, the second rule calculates the availability of the application by using the
Internal Component entity of the MODAClouds monitoring ontology (monitoredTarget
class="InternalComponent”). Recall that this kind of entity can represent the whole application.
The specified condition checks whether the application availability is greater than 0.998. Also,
observe that the availability metric needs some further parameter values (e.g., samplingTime,
retryPeriod, retryTime, etc.) for collecting data. In the current version of SeaClouds platform,
default values are used, but in the next version of the platform, these parameters will be
specified by the end-user.

<monitoringRule id="avgRespTime" label="avgRespTime" timeWindow="30" timeStep="30">
<collectedMetric metricName="ResponseTime">
<parameter name="samplingProbability">1</parameter>
</collectedMetric>
<monitoredTargets>
<monitoredTarget class="Method"/>
</monitoredTargets>
<metricAggregation aggregateFunction="Average" groupingClass="Method"/>
<condition> METRIC < 2 </condition>
<actions>
<action name="OutputMetric">
<parameter name="metric">ResponseTimeViolation</parameter>
<parameter name="value">METRIC</parameter>
<parameter name="resourceId">ID</parameter>
</action>
</actions>
</monitoringRule>

13https://github.com/deib—polimi/modaclouds—qos—modeIs/blob/master/doc/user—manual.md#actions

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

<monitoringRule id="availabilityRule" label="availabilityRule" timeWindow="30" timeStep="30">
<collectedMetric metricName="AppAvailable">
<parameter name="samplingTime">60</parameter>
<parameter name="retryPeriod">5</parameter>
<parameter name="retryTimes">0</parameter>
<parameter name="port">8080</parameter>
<parameter name="path">/index.html</parameter>
</collectedMetric>
<monitoredTargets>
<monitoredTarget class="InternalComponent" type="chat-webApplication"/>
</monitoredTargets>
<condition> METRIC > ©.998 </condition>
<actions>
<action name="OutputMetric">
<parameter name="metric">AppAvailabilityViolation</parameter>
<parameter name="value">METRIC</parameter>
<parameter name="resourcelId">ID</parameter>
</action>
</actions>
</monitoringRule>

Table 3: Monitoring rules for the application example

SLA for Web Chat Case Study

Given the specified requirements of the application and the monitoring rules obtained from
them, an SLA Agreement between the application provider (acting as a provider) and a generic
user of the application (acting as a customer) is supplied in Table 4.

An agreement may have several elements and attributes. In this case, the most important
elements are:

® context: contains the interested parties and the role of each one. The
Context/ServiceProvider element contains "AgreementResponder" or
"Agreementlnitiator" depending on who initiates the agreement. Usually, the service
customer is the agreement initiator, so the service provider is the agreement responder.
® service properties: these elements contains the variables used in the service level
objectives.
® guarantee terms: these are the terms that express the service level objectives of the
application. In this case, the two service level objectives are a response time less than 2
and an availability of a 99% at least. The SLA Service leverages on the monitoring rules,
so the output metrics of the monitoring rules are specified here.
According to WS-Agreement, the custom service level is a domain-specific expression. A simple
expression syntax has been developed in SeaClouds to express the needed non functional
requirements.

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

<wsag:Agreement xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement"
xmlns:sla="http://sla.atos.eu">
<wsag:Name>ChatAppRoom</wsag:Name>
<wsag:Context>
<wsag:AgreementInitiator>client</wsag:AgreementInitiator>
<wsag:AgreementResponder>seaclouds</wsag:AgreementResponder>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<sla:Service xmlns:sla="http://sla.atos.eu">chatroom</sla:Service>
</wsag:Context>
<wsag:Terms>
<wsag:All>
<wsag:ServiceProperties wsag:Name="NonFunctional"” wsag:ServiceName="default">
<wsag:VariableSet>
<wsag:Variable wsag:Name="ResponseTime" wsag:Metric="xs:double">
<wsag:Location></wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name="AppAvailable" wsag:Metric="xs:double">
<wsag:Location></wsag:Location>
</wsag:Variable>
</wsag:VariableSet>
</wsag:ServiceProperties>
<wsag:GuaranteeTerm wsag:Name="ResponseTimeGT">
<wsag:ServicelLevelObjective>
<wsag:KPITarget>
<wsag:KPIName>ResponseTime</wsag:KPIName>
<wsag:CustomServicelLevel>{"constraint": "ResponseTimeViolated",
"ResponseTime LT 2"}</wsag:CustomServicelLevel>
</wsag:KPITarget>
</wsag:ServicelLevelObjective>
</wsag:GuaranteeTerm>
<wsag:GuaranteeTerm wsag:Name="AppAvailableGT">
<wsag:ServicelLevelObjective>
<wsag:KPITarget>
<wsag:KPIName>AppAvailable</wsag:KPIName>
<wsag:CustomServicelLevel>{"constraint": "AppAvailableViolated", "gos
"AppAvailable GT 0.998"}</wsag:CustomServicelLevel>
</wsag:KPITarget>
</wsag:ServicelLevelObjective>
</wsag:GuaranteeTerm>
</wsag:All>
</wsag:Terms>
</wsag:Agreement>

gos

Table 4: SLA for Web Chat
5.5 Definition of the Deployable Application Model

TOSCA YAML DAM

The ADP, the monitoring rules, and the SLA are reviewed by the user through the Dashboard.
The user can then generate from these a DAM that assembles together all data produced by
the Matchmaker and the Optimizer, points to the monitoring rules and SLA URI and, finally,
includes in the specification information concerning the user credentials to be used to access
the selected cloud services if they are provided by the user through the Dashboard. The DAM
resulting from our application example is the one reported below:

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

tosca_definitions_version: tosca_simple_yaml_ 1 0 ©

topology_template:
node_templates:

java_ee_server:
type: seaclouds.nodes.Compute.Amazon
properties:
location: aws-ec2:us-west-2
num_instances: 1

db:
type: seaclouds.nodes.Compute.HP
properties:
num_instances: 1
location: seaclouds-hpcloud-region-b
disk_size: 50 GB

mysql_server:
type: seaclouds.nodes.Deploy.MySQL
properties:
name: some_name
user: some_user
password: some_password
version: 5.5.37
artifacts:
- db_create: files/db_create.sql
type: tosca.artifacts.File
requirements:
- host: db

tomcat_server:
type: seaclouds.nodes.deploy.tomcatServer

properties:

version: 7.0.53
artifacts:

- war: chat-webApplication.war
requirements:

- host: java_ee_server

cloud_credentials_java_ee_server:
type: seaclouds.nodes.credentials
properties:
identity: ABCDEFGHIJKLMNOPQRST
credential: s3cr3tsqlrr3ls3cr3tsqlrr3ls3cr3tsqlrr3l
requirements:
- host: java_ee_server

cloud_credentials_db:
type: seaclouds.nodes.credentials
properties:
identity: ABCDEFGHIJKLMNOPQRST
credential: s3cr3tsqlrr3ls3cr3tsqlrr3ls3cr3tsqlrr3l
requirements:
- host: db

db.query:

iﬁigehggngms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

type: seaclouds.nodes.lLogic
requirements:
- host: db

java_ee_server.operation:
type: seaclouds.nodes.lLogic
properties:
gos_requirements:
response_time: 2 sec
availability: ©.998
cost: 200 euros_per_month
workload: 50 req_per_mins
requirements:
- host: java_ee_server
- dependence_to_query:
node: db.query
relationship: java_ee_server.query.db

relationship_templates:
java_ee_server.query.db:
type: seaclouds.relationships.Uses
properties:
average_usage_count: 2

monitoring_rules:
type: seaclouds.nodes.Monitoring
artifacts:
- monitoring_rules: <URI>
type: tosca.artifacts.File

slas:
type: seaclouds.nodes.SLA
artifacts:
- sla_artifacts: <URI>
type: tosca.artifacts.File

CAMP YAML DAM

The TOSCA YAML DAM defined in the previous section contains the information needed for
deploying our application.

Since our first prototype of Deployer exploits the CAMP syntax for the DAM, the current version
of the SeaClouds integrated platform requires a manual conversion from TOSCA to CAMP to be
performed at this stage (such manual conversion is performed according to the rules defined in
[15]). In the next release of the platform such gap will be covered and the Deployer will accept
DAM in the TOSCA format.

The Deployer receives a DAM, which specifies the application to deploy, its distribution and
orchestration, and follows the instruction to deploy the application using the services indicated.

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

Then, the Deployer initializes the monitoring components and maintains the management of
the application.

As described in the SeaClouds Architecture [1], in the Deployer component, different engines
could be used to deploy the application. In our first solution, Apache Brooklyn is used as
Deployer engine, to accomplish the heterogeneous management of the cloud providers. Given
this choice, the DAM definition is based on the YAML Blueprint specification of Brooklyn [16].

In the following subsections we provide a short overview of the CAMP-based syntax of the
DAM, a definition of the mapping between CAMP and TOSCA constructs (this mapping
constitutes the basis for the future development of the new version of the Deployer), and the
CAMP YAML DAM of our reference application.

CAMP-based DAM schema

Below, we outline the CAMP-based DAM schema and provide an overview of the main
components needed to describe the application and its management.

name: name of application
location: a location specification element as a string or map.

services: this block contains the entities which compose the application.
- serviceType/service: service reference
name: human readable name of entity.
id: id of entity.
location: location (provider service) where the entity will be deployed (target cloud provider).
config: (features and requirements of the entity).
children: a list of child specifications which will be configured as children of this
entity.
policies: list of policy specifications which add behavior to the entity.
enrichers: enrichers of this entity.
initializers: values needed to configure this entity (key values).

The schema shows the elements needed by the Deployer in order to deploy and manage the
application modules over the target providers. A detailed description of every element in the
DAM is presented in deliverable D4.1 [3].

Mapping between TOSCA and CAMP DAM

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

The mapping between the TOSCA and CAMP DAMs is performed according to the rules
defined in this section.

The services in CAMP YAML are represented by means of the node templates in
TOSCA YAML. In our example, the Tomcat service in CAMP YAML is represented by the
node_templates java ee server (which defines the machine) and the tomcat server
(which defines the application). Analogously, MySQL in CAMP YAML is represented by the
node_templates db (which defines the machine) and mysgl server (which defines the
application).

The type of the service in CAMP YAML is mapped to the type of the node template
in TOSCA YAML that describes the application (i.e. tomcat server.type and

mysqgl server.type).

The location of the service in CAMP YAML identifies the cloud service where the
application should be deployed, which in the TOSCA YAML is in the location of
node templates defining the machine.

The credential information for the cloud service is represented by identity and
credential inside the services node in CAMP YAML. In TOSCA YAML it is represented
also as identity and credential, but in a new node template of type
seaclouds.nodes.credentials. In our example, these are

cloud credentials db andcloud credentials java ee server.

The artifacts to deploy, are defined in wars.root (for the tomcat application) and
creationScriptUrl (for MySQL) and are specified inside brooklyn.configin CAMP
YAML. In TOSCA YAMIL, this is represented as war and db_create respectively, which are
specified inside artifacts.

The minDisk, which represents the amount of disk required, is defined in
provisioning.properties in CAMP YAML. This corresponds to the disk size
property in the properties of the node template of the machine.

Finally, to perform the binding of the different components (in our example, the Tomcat server
should connect to the dabatase), the CAMP YAML document defines the following instruction:

brooklyn.example.db.url: >
Sbrooklyn:formatString (

"jdbc:%s%$s?user=%s&password=%s",

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

component ("mysgl server").attributeWhenReady ("datastore.url"),
"some name",
"some user",

"some password”

In TOSCA YAML, this binding is defined in properties of the component to be bound to. In our
example, the properties of MySQL, include the name, the user andthe password.

The rest of CAMP elements (e.g. enrichers) are not required in the current example, and their
mapping with TOSCA is still to be defined.

Resulting CAMP YAML DAM

Given the mapping explained in the previous section, the DAM expressed in the CAMP YAML
format is the one below:

name: Application
services:
- type: brooklyn.entity.webapp.tomcat.TomcatServer
id: tomcat_server
name: My TomcatServer
location:
jclouds:aws-ec2:
identity: ABCDEFGHIJKLMNOPQRST
credential: s3cr3tsqlrr3ls3cr3tsqlrr3ls3cr3tsqlrr3l
brooklyn.config:
wars.root: chat-webApplication.war
java.sysprops:
brooklyn.example.db.url: >
$brooklyn:formatString(
"jdbc:%s%s?user=%s&password=%s",
component("mysql_server").attributeWhenReady("datastore.url"),
"some_name",
"some_user",
"some_password"

- type: brooklyn.entity.database.mysql.MySqlNode
id: mysql_server
name: My SQL Server
location: seaclouds-hpcloud-region-b

brooklyn.config:
creationScriptUrl: files/db_create.sql
provisioning.properties:
minDisk: 50g

iﬁigehggngms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

Let us discuss the main differences between CAMP and TOSCA models that could hamper the
association of concepts between models. Regarding the connection of tomcat_server with
mysql_server, in CAMP model the database connection for the web component is configured in
the TomcatServer entity using a String “jdbc:...”, which is generated at run-time. The reason
is that, for establishing the connection, tomcat_server waits until mysql_server has been
deployed and has an IP address. After that moment, it is able to request the database IP,
which corresponds to the first parameter (i.e., component("mysql_server").
attributeWhenReady("datastore.url")) of the connection String. Finally, tomcat_server completes
the aforementioned connection String using the connection credentials provided by the db
module (i.e., username and password).

We can also see that, while TOSCA model includes four nodes -named java_ee_server, db
tomcat_server and mysql_server- CAMP model includes only two -tomcat_server and
mysql_server. The reason is that CAMP aggregates the software and the infrastructure
information in a single node (e.g., see that field 1ocation in mysql_server node includes also the
information of the db infrastructure), while TOSCA model dedicates a node for each concept.
Besides the Deployer, also the Monitoring platform exploits the DAM to generate an
application-specific instance of the MODACIouds monitoring ontology (described earlier in
Section 5.4) in JSON format.

MODACIouds-Based Deployment Model of the Application Example

Internal Component Internal Component Method
P requiredComponent P providedMethod
chat_webApplication java_ee_server anyMethod()
requiredComponent requiredComponent
Internal Component Internal Component A
. VM) CloudProvider
requiredComponent cloudProvide
dh tomcat_server
tomcat_server_VM Cloud1

requiredComponent

Internal Component .
; VM) CloudProvider
requiredComponent cloudProvider,

mysql_server

mysql_server_VM Cloud?2

Figure 4: UML diagram of MODACIlouds-based deployment model for the application example

The DAM is used at runtime also by the Monitoring platform. The monitoring internal
representation of such DAM is obtained by instantiating the MODACIouds monitoring ontology.
The resulting monitoring deployment model for the application example is provided in Figure 4

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

as a UML diagram. In this model, the business logic of the application is represented by the
Internal Component java_ee_server, which provides multiple methods (in the figure, we do not
provide specific method names). The business logic of the application is available through an
application server, represented by the Internal Component tomcat_server. Also, the application
requires the Internal Component db, which represents the database, used by the application for
creating and storing the application data. The database is available through a database server,
represented by the Internal Component mysql_server. Both application server and database are
executed by using a VM of the machines of a CloudProvider.

The construction of the monitoring deployment model is obtained from the DAM according to
the following rules: The type of a module can be used for identifying the kind of the
corresponding MODACIlouds entity. For instance, the type seaclouds.nodes.deploy.MySQL in
TOSCA YAML DAM corresponds to an Internal Component MODACIlouds entity. Additionally, the
hosting requirements can be used for identifying the relationships between MODACIouds
entities. For instance, the requirements host: java_ee_server inside the module tomcat_server
in TOSCA YAML DAM corresponds to the relationship requiredComponent between the Internal
Components java_ee_server and tomcat_server in the MODACIouds deployment model (see
Figure 4).

The full specification of this mapping is going to be delivered in the next version of the
integrated SeaClouds platform together with an automatic format translation. In the current
version of the platform, the monitoring component has to be initialized with the deployment
model presented above and defined in the following JSON format. The values of the fields (e.g.,
mysql_server_VM_ID), which are not present in TOSCA YAML DAM, are set as default values.

{"cloudProviders":[{"id":"Cloud2"},{"id":"Cloud1"}],

"vMs" : [{"numberOfCPUs":6,"cloudProvider":"Cloud2","type":"mysql_server_VM","id":"mysql_serve
r_VM_ID"}, {"numberOfCPUs":0, "cloudProvider":"Cloudl1", "type":"tomcat_server_VM","id":"tomcat_
server_VM_ID"}],

"internalComponents":[{"requiredComponents":["mysql_server_VM_ID"],"providedMethods":[],"typ
e":"mysql_server","id":"mysql_server_ID"},{"requiredComponents”:["tomcatServer_ID","java_ee_
server_ID","DB1"], "providedMethods": ["anyMethod_ID"],"type":"java_ee_server","id":"java_ee_s
erver_ID"},{"requiredComponents”:["tomcatServer_ID"],"providedMethods":[],"type":"DB","id":"
DB1"},{"requiredComponents":["tomcat_server_VM_ID"],"providedMethods":[], "type":"tomcat_serv
er","id":"tomcatServer_ID"},{"requiredComponents":[], "providedMethods":[], "type":"chat_webAp
plication","id":"chat_webApplication_ID"}],"methods":[{"type":"anyMethod","id":"anyMethod_ID
"}1}

iﬁigehggngms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

5.6 Executing and monitoring the application

After the application deployment, the execution and the monitoring of the application is
started. In particular, during the application execution, the installed data collectors send data to
the monitoring platform and especially, to the Data Analyzer component of the monitoring
platform. In turn, the monitoring platform forwards these data to the Deployer and the
Dashboard. This last one retrieves raw monitoring data through the Monitor and visualizes
them.

In the next version of the SeaClouds Integrated Platform, the Deployer will use these data to
evaluate its management policies. If a policy is violated, then the Deployer will try to fix this by
repairing the deployment plan. If a repairing activity is not possible, then the Deployer will
decide and trigger the re-planning of the current application via an interaction with the
Monitor.

Finally, the Monitor uses the raw data for evaluating its monitoring rules. In particular, the
Monitor processes and filters raw data based on the definition of the previously defined
monitoring rules. For instance, the evaluation of the first monitoring rule, which measures the
average response time of the application methods (see Section 5.4), will result in the following
behavior. The data collector, which is in charge of monitoring the response time of each
application method, sends monitoring data whenever each application method is called. The
Data Analyzer component of the monitoring platform retrieves these data, partitions the data
per method, and for each method, computes every 30 seconds the average response time of
the method of the last 30 seconds of data (timeWindow="30" timeStep="30"). An example of
the calculated average response time (in miliseconds) for a method of the application example
is presented below.

{"http://www.modaclouds.eu/rdfs/1.0/monitoringdatattmetric":[{"type":"1literal”,"value":"Respo
nseTimeViolation" }],

"http://www.modaclouds.eu/rdfs/1.0/monitoringdata#timestamp”:[{"type":"literal","value" :
"1429028681315", "datatype": "http://www.w3.org/2001/XMLSchemat#tinteger" } 1],

"http://www.modaclouds.eu/rdfs/1.0/monitoringdata#value":[{"type:"literal”,
"value":"47.0e0", "datatype”: "http://www.w3.org/2001/XMLSchema#tdouble" }],

"http://www.modaclouds.eu/rdfs/1.0/monitoringdata#resourceId":[{"type":"literal","value":"ch
at_webApplication-anyMethod" }] }

In case the value of the calculated average response time is not lower than two seconds, then a
violation of this rule is performed and an alert is triggered to the SLA service, which has

iﬁigehggrgms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

previously subscribed to such events. In this case, the SLA service receives the violation and
stores it as QoS violation of this SLA agreement. In this way, a posterior analysis of the
fulfillment of the agreed service could be performed.

In the next release of the integrated platform, a more complex definition of policies will be
available, allowing the description of business penalties to apply when a guarantee term is
violated.

6 Update on tools and practices for continuous integration and quality
assurance

To ensure a good level of QA a completely free Continuous Integration (Cl) and Continuous
Distribution has been set up.

We identified travis-ci.org [https://travis-ci.org/SeaCloudsEU/SeaCloudsPlatform] as Cl system

to build the source code hosted on github [https://github.com/SeaCloudsEU/]. For each new

commit against https://github.com/SeaCloudsEU/SeaCloudsPlatform in whatever branch of

that repository, a new build on travis-ci is triggered. Basically, by configuring the github
repository with a .travis.yml file it is now possible to run a build plus the unit tests defined for
that repository, for any branch the developers want to use.

Additionally, as SeaClouds platform is built using java language, the build will also store all the
resulting artifacts of a green build to a central repository. In fact, we agreed on distributing the
artifacts generated from the source code, like jar file, war file, etc., to a well-know public
managed maven repository hosted by Sonatype. This means that all the SNAPSHOTSs created by
a successful build will be automatically pushed to the “eu.seaclouds-project™ space at SONATYPE
snapshot repository [https://oss.sonatype.org/content/repositories/snapshots/eu/seaclouds-

project/] as it is free for opensource projects like ours.

The above workflow based on free managed services (github, travis, sonatype) can be
consumed by 2 main stakeholders: SeaClouds developers that can manually get access to an
always up-to-date, tested and tracked set of binaries of the project.

As SeaClouds platform artifacts are published in a public easily accessible repository, SeaClouds
consortium agreed in using Apache Brooklyn as the Deployer of the SeaClouds platform itself.
By using most of the mechanism that we are developing for the SeaClouds end-users,
SeaClouds team will be able to deploy in a number of different environment the SeaClouds
platform by deploying the SeaClouds blueprint.

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

7 Updated integration plan

The next five months of the project will be dedicated to the production of the Final Integrated
platform. This will include all functions foreseen for the SeaClouds project. In particular:

e The design-time GUI and the Discovery component will be released and integrated with
the other components.

e The Deployer is being extended in the following main directions: i) to be able to handle
TOSCA-based DAMs, ii) to extract from the DAM the information needed by the
Monitoring Platform and the SLA Service and to pass this to them, and, most important
iii) to be able to support PaaS-based deployment and iv) to support repairing of the
application.

e The Planner is being extended with the application replanning feature and with the
possibility of producing a more complete DAM that includes, besides the basic resource
allocation information, also the monitoring rules and SLA associated to an application.

These extensions will lead to the architecture of Figure 5 and will greatly simplify the work of
developers and operators of multi-cloud applications as they will be able to manage from a
single GUI the whole life-cycle of their applications.

‘ Dashboard / SeaClouds API

! P
T 4 Confirmed Deployable Business SLA info
1 Abstract Deployable 3 Application Model 6 -
Application Application ¢ SLA setup SLA Service .
Model Model | I
l Deployer 5| L SLAManager |i<— lerts
- | SLA Generator | 1
Planner Deployer Engine Live PR T
| Model Repairing Subscription 7
Matchmaking Cloud adapters " to rules
1
10
Optimizer ||_ N Monitor
- Replanning 712
triggers
5 I T‘ s o Data | | Monitoring

Cloud N il Analyzer Manager

Providers request setup
8
¢ I App Deployment and
) Data Collector installation
Discoverer
. Y X % /,\,(\/ "\r”\\
/
C ’EE Application g‘ 1 Application 9 Monitoring
t T module [module Svarit

O . —
\/\; Ct;mor - Ct;Eor Q

Figure 5: SeaClouds final integrated platform

iﬁi%&%gggms D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

8 Conclusions

The SeaClouds Integrated Platform is currently available in the form described in this
deliverable but it will be continuously updated from now till the end of the project, following
the continuous integration approach we have adopted. To reflect such evolution, the current

document will be made available online as a live document and continuously updated in all its
parts.

iﬁigehggrgms D5.2.2 - Final design of the User Interface _

Modelling Planning Controlling

References

[1]. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds Consortium), To be
published, 2015.

[2]. SeaClouds Project. Deliverable D3.1 Discovery, design and orchestration functionalities: Fiest
specification (SeaClouds Consortium), http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-
Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf, 2014.

[3]. SeaClouds Project. Deliverable D4.1 Definition of the multi-deployment and monitoring strategies
(SeaClouds Consortium), http://seaclouds-project.eu/deliverables/SEACLOUDS-
D4.1_Definition_of the_multi-deployment_and_monitoring_strategies.pdf, 2014.

[4]. SeaClouds Project. Deliverable D5.4.1 Initial version of the s/w platform (SeaClouds Consortium),
http://seaclouds-project.eu/deliverables/SEACLOUDS-D5.4.1-Initial_version_of sw_platform.pdf,
2014.

[5]. SeaClouds Project. Deliverable D5.1.1 Definition of the software developing environment (SeaClouds
Consortium), http://seaclouds-project.eu/deliverables/SeaClouds-D5.1.1-

Definition_of the_software_developing_environment.pdf, 2014,

[6]. SeaClouds Project. Deliverable D4.3 Design of the run-time reconfiguration process (SeaClouds
Consortium), To be published, 2015.

[7]. SeaClouds Project. Deliverable D4.4. Dynamic QoS Verification and SLA Management Approach
(SeaClouds Consortium), To be published, 2015.

[8]. SeaClouds Project. Deliverable D5.2.2 Final design of the user interface (SeaClouds Consortium), To
be published, 2015.

[9]. Model-driven approach for design and execution of applications on multiple clouds, Project is
partially Funded by European Commission Grant no. FP7-ICT-2011-8-318484, 2013-2015,
https://github.com/deib-polimi/modaclouds-monitoring-manager/wiki

[10]. SeaClouds Project. Deliverable D4.5. Unified Dashboard and Revision of Cloud API (SeaClouds
Consortium), March 2015.

[11]. Apache brooklyn deployment blueprint
https://brooklyn.incubator.apache.org/v/latest/start/blueprints.html

[12]. SeaClouds Project. Deliverable D3.2. Discovery, design and orchestration functionalities
(SeaClouds Consortium), To be published, 2015.

[13]. TOSCA Simple Profile in YAML Version 1.0 . http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html

[14]. Web Services Agreement Specification, http://www.ogf.org/documents/GFD.192, Open Grid
Forum, 2011.

[15]. Jose Carrasco, Javier Cubo, Ernesto Pimentel. Towards a Flexible Deployment of Multi-cloud

Applications Based on TOSCA and CAMP. Advances in Service-Oriented and Cloud Computing,
Communications in Computer and Information Science Volume 508, 2015, pp 278-286, 2015.

§G§\TuaAr$el!TaeopLgdnEst D5.2.2 - Final design of the User Interface

Modelling Planning Controlling

[16]. Brooklyn YAML Blueprint Reference, http://brooklyncentral.github.io/v/0.7.0-
SNAPSHOT/use/guide/defining-applications/yaml-reference.html, CloudSoft, 2014.

