

SeaClouds Project

D5.3 – Implementation of the User

Interface
Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based

applications

Call identifier FP7-ICT-2012-10

Grant agreement no. 610531

Start Date 1
st

 October 2013

Ending Date 31
st

 March 2016

Work Package WP5 Integration, infrastructure delivery and GUI

Deliverable code D5.3

Deliverable Title Implementation of the User Interface

Nature Prototype

Dissemination Level Public

Due Date: M24

Submission Date: 14
th

 October 2015

Version: 1.0

Status Final
Author(s): Román Sosa González (Atos), Adrián Nieto (UMA)

Reviewer(s) Marc Oriol (UPI), Christian Tismer (Nuro)

2 D5.3 – Implementation of the User Interface

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

 Public X

 Restricted to other programme participants (including the Commission)

 Restricted to a group specified by the consortium (including the Commission)

 Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors, reviewers

0.1 18/09/2015 ToC Román Sosa

0.2 21/09/2015 Introduction and overview Román Sosa, Adrián Nieto

0.3 22/09/2015 Installation Román Sosa, Adrián Nieto

0.4 23/09/2015 Usage screens Román Sosa, Adrián Nieto

0.5 25/09/2015 Usage section description Román Sosa, Adrián Nieto

0.6 28/09/2015 Version to internal review Román Sosa

1.0 14/10/2015 Final version after internal

review

Román Sosa, Marc Oriol, Adrián Nieto

3 D5.3 – Implementation of the User Interface

Table of Contents

Table of Contents .. 3

Executive Summary ... 5

1 Introduction ... 6

1.1 Glossary of Acronyms .. 6

2 Overview of the User Interface .. 7

2.1 Architecture .. 7

2.2 Technology .. 8

2.3 File formats ... 8

 Topology .. 8 2.3.1

 Abstract Application Model .. 11 2.3.2

3 Installation .. 14

3.1 Standalone installation ... 15

3.2 Installation with Brooklyn ... 15

4 Usage of the User Interface ... 17

4.1 Add new application ... 17

 New application properties .. 18 4.1.1

 Topology designer .. 19 4.1.2

 Optimization result ... 25 4.1.3

 New application summary .. 25 4.1.4

 Application deployment process ... 27 4.1.1

4.2 Application status .. 27

 Overview .. 27 4.2.1

 SLA ... 27 4.2.2

 Legacy monitoring .. 29 4.2.3

4.3 Grafana Monitoring View .. 29

4.4 Remove application... 30

5 Conclusions .. 31

Appendix A. Topology model for Chat application ... 32

Appendix B. Abstract Application Model for Chat application ... 33

References .. 35

4 D5.3 – Implementation of the User Interface

List of Figures

FIGURE 1: DASHBOARD ARCHITECTURE .. 7

FIGURE 2: NEW APPLICATION PROPERTIES ... 19

FIGURE 3: DESIGN OF THE TOPOLOGY .. 20

FIGURE 4: COMPONENT DETAILS .. 21

FIGURE 5: WEB APPLICATION TECHNOLOGICAL REQUIREMENTS ... 22

FIGURE 6: DATABASE TECHNOLOGICAL REQUIREMENTS .. 22

FIGURE 7: NON-FUNCTIONAL REQUIREMENTS ... 23

FIGURE 8: PROVIDER INFRASTRUCTURE .. 24

FIGURE 9: CONNECTTO RELATIONSHIP PROPERTIES ... 24

FIGURE 10: OPTIMIZATION RESULT ... 25

FIGURE 11: NEW APPLICATION SUMMARY ... 26

FIGURE 12: DEPLOYMENT PROCESS .. 26

FIGURE 13: OVERVIEW OF APPLICATION STATUS ... 28

FIGURE 14: SLA STATUS ... 28

FIGURE 15: LEGACY MONITORING .. 29

FIGURE 16: GRAFANA MONITORING VIEW ... 30

FIGURE 17: REMOVE APPLICATION ... 30

List of Tables

TABLE 1: GLOSSARY OF ACRONYMS ... 6

 List of Listings

LISTING 1: TOPOLOGY MODEL STRUCTURE ... 9

LISTING 2: ABSTRACT APPLICATION MODEL STRUCTURE ... 12

LISTING 3: DEFAULT CONFIG CONFIG FOR DASHBOARD ... 14

LISTING 4: DEFINING THE NEEDED ENVIRONMENT VARS FOR THE DASHBOARD EXECUTION 15

LISTING 5: DASHBOARD BROOKLYN BLUEPRINT ... 16

5 D5.3 – Implementation of the User Interface

Executive Summary

This deliverable is the final User Interface developed within the SeaClouds project. This

document aims at accompanying the software by offering information about: i) the interactions

between the User Interface and the rest of the components of SeaClouds; ii) the way of install

and run the User Interface, and iii) the usage of the User Interface.

6 D5.3 – Implementation of the User Interface

1 Introduction

In the context of the SeaClouds project, the SeaClouds User Interface constitutes the

uppermost layer in the SeaClouds architecture. The high-level specification of this interface was

defined in D2.4 [1], according to the requirements elicitation defined in D2.1 [2].

The User Interface has been implemented following the design principles outlined in D5.2.1 [4]

and the design of the prototype shown in D5.2.2 [5].

This document is structured as follows:

• Section 2 of the deliverable is an overview of the SeaClouds components that

constitutes the User Interface, the relation with other SeaClouds components, and the

data that these components process.

• Section 3 contains the installation and running guide of the User Interface.

• Section 4 explains the usage of the User Interface through an example.

• Appendix A contains examples of the file formats described in section 2.

1.1 Glossary of Acronyms

Acronym Definition

AAM Abstract Application Model

API Application Program Interface

DBMS DataBase Management System

GUI Graphical User Interface

IaaS Infrastructure as a Service

JSON JavaScript Object Notation

MVC Model View Controller

PaaS Platform as a Service

QoB Quality of Business

QoS Quality of Service

REST REpresentational State Transfer

SLA Service Level Agreement

VM Virtual Machine

YAML YAML Ain't Markup Language
Table 1: Glossary of acronyms

7 D5.3 – Implementation of the User Interface

2 Overview of the User Interface

SeaClouds Dashboard Component provides a rich and simple user interface among with the

necessary services built over a REST API. The Dashboard
1
 code is located in the SeaClouds

repository.

2.1 Architecture

SeaClouds Dashboard is built on top of DropWizard
2
 Java library. It eases the packaging and the

development process by the combination of some technologies, like Jetty (as the Web Server),

Jersey (to build the REST API) or Jackson (a JSON to Java Object parser).

The user interface is provided by DropWizard to the user as pure HTML+JS code. This code will

interact with SeaClouds Platform by calling the REST API endpoints. They also allow developers

to extend SeaClouds functionality or accessing to each Module with independence of the other

ones.

Figure 1: Dashboard architecture

1
 https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/dashboard

2
 http://www.dropwizard.io/

8 D5.3 – Implementation of the User Interface

2.2 Technology

The Dashboard is a pure HTML5 + JavaScript application. It uses REST calls to interact with the

SeaClouds Platform. The SeaClouds Dashboard is based on the Bootstrap library, which allows

adapting the website to the size of the screen, providing a nice user experience with

independence of the device (mobile, tablet or traditional desktop). It also uses technologies like

AngularJS as a client side MVC to simplify both the development and the testing of such

applications by providing a framework for client-side model–view–controller (MVC) and model–

view–viewmodel (MVVM) architectures, along with components commonly used in rich

Internet applications.

The AngularJS library works by first reading the HTML page, which has embedded into it

additional custom tag attributes. Angular interprets those attributes as directives to bind input

or output parts of the page to a model that is represented by standard JavaScript variables. The

values of those JavaScript variables can be manually set within the code, or retrieved from

static or dynamic JSON resources

Among with these core libraries the topology editor/viewer uses D3.js, a JavaScript library for

manipulating documents based on data by providing a framework to work with HTML, SVG, and

CSS to display the information in a user friendly format.

2.3 File formats

The main goal of the User Interface is to support users in defining the Topology Model of an

application, that is, a description of its components and the way they are connected, and in

generating the Abstract Application Model, that is, the TOSCA YAML representation of the

Topology Model.

The following of this section provides more details on these two elements.

 Topology 2.3.1

The topology model describes the application in a friendly way for the User Interface. Its

structure resembles a visually represented graph. It is a JSON file, used only inside the User

Interface, which describes: i) the application in terms of its modules, ii) the relationships

9 D5.3 – Implementation of the User Interface

between the modules and iii) the user requirements. This model is created during the "New

application" wizard, and is used during the status view of the application.

The topology model has the structure shown in Listing 1.

{
 "name": "<Application Name>",
 "application_requirements": {
 "response_time": "<Response Time in ms>",
 "availability": "<Availability between 0 and 1>",
 "cost": "<Max desired euros per month>",
 "workload": "<Estimated requests / minute>"
 },
 "nodes": [
 {
 "name": "<Node Name>",
 "type": "<Node Type>",
 "properties": {
 ...
 }
 },
 ...
],
 "links": [
 {
 "source": "<Source Node Name>",
 "target": "<Target Node Name>",
 "type": "<ConnectsTo|Host>"
 "properties": {
 ...
 }
 },
],
}

Listing 1: Topology model structure

A full example of a real application is found in Appendix A.

The fields of the topology model are explained in the following subsections:

Application Requirements

The application requirements are filled in the first step of the "New application" wizard, and

describes general requirements related to the application itself. These requirements are used

by the Optimizer, and they must be set to obtain a sensible result from the optimization

process. If these requirements are left empty, all cloud providers that fulfil the technical

requirements may be result of the Optimizer in any order.

The description of the application requirements are:

10 D5.3 – Implementation of the User Interface

• Response Time. This is the desired maximum response time of the application,

measured in milliseconds. The response time is defined as the time needed by the

frontend module of the application to respond to a client request, and englobes all the

calls between the different modules. The latency times between the client and the

application are not included in this time.

• Availability. Express the desired availability of the application. The availability describes

the time in a month where the service must be available, over the total possible

available time, expressed as a percentage. The cloud providers usually state the

availability of their services in their SLA, so providers with declared availability lower

than the requested availability will not be considered.

• Cost. The cost, or budget, describes the maximum estimated cost, measured in euros

per month, that the application is willing to spend in cloud provider resources.

• Workload. This is the averaged requests per minute that the application is expected to

receive.

Such application requirements are used by the Optimizer, which will allocate cloud resources to

the application by ensuring that, for the given workload, the application will fulfil the

availability and response time requirements, and the cost of the cloud resources needed to

obtain the desired QoS is lower than the budget.

The Optimizer also calculates the threshold where the system should scale out. These threshold

values are specified in requests per minute: when the workload reaches a threshold, the system

should add an instance (a VM in the case of IaaS infrastructures).

A detailed description of the Optimizer is found in Section 5.2.2 of the deliverable D3.2 [6].

Nodes

The nodes are the components that the application is composed of. They include the software

artifacts and the services needed by the components itself: databases, message queues…

11 D5.3 – Implementation of the User Interface

When the application being designed is sent to the planner, it responds with a set of possible

offerings where to deploy each component of the application. When the user selects one of the

options, the model is enriched with nodes representing the cloud providers.

There are two main properties in the node:

• Type. It represents the kind of the node: a web application, a relation database, a NoSQL

database, a cloud provider…

• Properties. This field is a dictionary of values that contain the node properties. These

properties are dependent on the type of the node, and will be detailed in section 4.1.2

of this document. In the case of a web application, the properties are the language used

for the implementation, the application server where the web application is going to be

hosted on, the required port where the application will listen… In the case of a cloud

provider, the properties are the user credentials to that cloud provider.

Links

A link expresses an existent relationship between a source node and a target node.

There are two main properties in a link:

• Type. There are two types of links: i) ConnectTo: a dependency link, where a source

node uses a target node, and ii) Host: a host link, where a source node is hosted on a

target node.

• Properties. This field is a dictionary of values that contain the link properties. These

properties are dependent on the type of the link, and will be detailed in section 4.1.2 of

this document.

 Abstract Application Model 2.3.2

The Abstract Application Model (AAM) describes the topology of the application and its

requirements, following the TOSCA specification. A complete definition of its semantics can be

found in Deliverable D3.2 [6].

12 D5.3 – Implementation of the User Interface

One of the components of the Dashboard is the AAM Generator, which generates the AAM

from the topology model. The AAM is needed in the Planner component in order to perform

the matchmaking and optimizing processes.

The Abstract Application Model contains most of the information contained in the topology

model, but restructured to follow the TOSCA specification. Concretely, its structure is depicted

in Listing 2.

tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03
description: <Application Name>
imports:
- tosca-normative-types:1.0.0.wd03-SNAPSHOT

topology_template:
 node_templates:
 Module:
 type: sc_req.Module1
 artifacts: {}
 - war: <artifact url>
 type: tosca.artifacts.File
 properties: {}
 requirements:
 - endpoint: <Other Module>
 ...

node_types:
 sc_req.Module:
 derived_from: seaclouds.nodes.<deployable entity>
 properties: {}
 ...

groups:
 operation:
 members:
 - Module
 policies:
 - QoSInfo: {}
 - dependencies: {}
 - QoSRequirements: {}

Listing 2: Abstract Application Model structure

The node_templates section contains the properties the deployment layer of the application,

i.e., the software components to be deployed, and correspond with the nodes in the topology

model. Each node template defines the artifact, technical requirements and dependencies with

other node templates.

13 D5.3 – Implementation of the User Interface

The node_types section defines the node types of the node templates. Each node template

representing an application component has as type a node type defined in this section. These

node types are marked with a special prefix (sc_req), intended to be recognized by the

Matchmaker as an entity that contains the properties that should be used to filter the cloud

offerings. For example, if a database is required to be Mysql 5.5 and to be hosted on a PaaS

provider, the associated node type contains the properties mysql_support=true,

mysql_version=5.5 and resource_type=platform.

Finally, the groups section defines the policies, which will be used for optimization at design

time, and for reconfiguration at runtime. A group is defined by a set of operations, and a

operation is defined by a module and a policy that applies to the module.

Each policy is composed of:

• QoSInfo: benchmarking information specified by the user when designing the

application,

• Dependencies: information about the "connects to" relationships between the referred

module and other modules, and the number of times that this relationship is called.

• QoS requirements: contains the application requirements in case of a frontend module,

and specific QoS constraints and business values for a module.

A full example of a real application is found in Appendix B.

14 D5.3 – Implementation of the User Interface

3 Installation

The usage of DropWizard Library eases the installation and usage of SeaClouds Dashboard. It

simplifies the setup to the installation of Java Virtual Machine (JVM) greater than 1.7 and

running the associated jar file.

In order to wire the Dashboard with the other SeaClouds Components, DropWizard uses a

YAML file (shown in Listing 3), which is passed as an argument to the dashboard jar file. This

YAML file specifies DropWizard specific parameters like HTTP port among with the required

parameters to reach every Component endpoint.

server:
 applicationConnectors:
 - type: http
 port: 8000
 adminConnectors:
 - type: http
 port: 8001
planner:
 host: ${PLANNER_HOST}
 port: ${PLANNER_PORT}
deployer:
 host: ${DEPLOYER_HOST}
 port: ${DEPLOYER_PORT}
 user: ${DEPLOYER_USER}
 password: ${DEPLOYER_PASSWORD}
monitor:
 host: ${MONITOR_HOST}
 port: ${MONITOR_PORT}
sla:
 host: ${SLA_HOST}
 port: ${SLA_PORT}

Listing 3: Default config config for Dashboard

There are two ways to run the Dashboard. These two options require cloning the SeaClouds

GitHub repository or downloading a precompiled version. Please read the SeaClouds Usage

Guide
3
 for further information.

3

https://github.com/SeaCloudsEU/SeaCloudsPlatform/blob/master/usage/installer/README.md

15 D5.3 – Implementation of the User Interface

3.1 Standalone installation

The default configuration file for the dashboard delegates on some environment variables the

actual location of the other SeaClouds components. As such, the easiest way to manually start

the dashboard is defining these environment variables (in uppercase in Listing 4).

The Listing 4 is an example on how to define the environment vars.

export PLANNER_HOST=localhost
export PLANNER_PORT=9000
export DEPLOYER_HOST=localhost
export DEPLOYER_PORT=8081
export DEPLOYER_USER=admin
export DEPLOYER_PASSWORD=admin
export MONITOR_HOST=localhost
export MONITOR_PORT=9002
export SLA_HOST=localhost
export SLA_PORT=9003

Listing 4: Defining the needed environment vars for the Dashboard execution

Once the variables have been defined, the dashboard is executed with the following command:

java -jar target/dashboard.jar server config.yml

where config.yml is the path of the dashboard configuration file.

3.2 Installation with Brooklyn

The default way to deploy SeaClouds, as explained in deliverable D5.1.3 [7], is using Brooklyn

[8] blueprints. The blueprints used to deploy SeaClouds are located in the blueprints folder
4
 in

the Usage subproject of the SeaClouds platform.

The Listing 5 shows the excerpt of Brooklyn blueprint that deploys the Dashboard component.

- serviceType: brooklyn.entity.basic.SameServerEntity
 name: SeaClouds Dashboard

 shell.env:
 SLA_HOST: $brooklyn:component("sla-core").attributeWhenReady("host.address")
 SLA_PORT: $brooklyn:component("sla-core").attributeWhenReady("http.port")

 brooklyn.children:
 - serviceType: eu.seaclouds.dashboard.SeacloudsDashboard
 name: SeaClouds Dashboard
 id: dashboard
 brooklyn.config:

4

https://github.com/SeaCloudsEU/SeaCloudsPlatform/blob/master/usage/installer/src/main/ass

embly/files/blueprints/

16 D5.3 – Implementation of the User Interface

 port: 8000
 adminPort: 8001
 deployerHost: $brooklyn:component("deployer").attributeWhenReady("host.address")
 deployerPort:
$brooklyn:component("deployer").attributeWhenReady("brooklynnode.webconsole.httpPort")
 deployerUser: $brooklyn:component("deployer").config("brooklynnode.managementUser")
 deployerPassword:
$brooklyn:component("deployer").config("brooklynnode.managementPassword")
 slaHost: $SLA_HOST
 monitorHost: $brooklyn:component("monitoring-manager").attributeWhenReady("host.address")
 monitorPort: $brooklyn:component("monitoring-
manager").attributeWhenReady("modaclouds.mm.port")
 install.latch: $brooklyn:component("sla-core").attributeWhenReady("service.isUp")

Listing 5: Dashboard Brooklyn Blueprint

17 D5.3 – Implementation of the User Interface

4 Usage of the User Interface

The usage of the User Interface will be illustrated by the utilization of an application example.

This application example is described in D5.1.3 [7], and its requirements are included here for

convenience.

We assume that the example application has the following requirements:

• The database is MySQL 5.0 and needs 50GB of size.

• The application server has to be able to execute Java.

• The application availability should be higher than 99.8%.

• The application expected response time is lower than 2 seconds for an arrival rate of 50

messages per minute.

• The chat owner organisation expects to spend less than 200 Euros per month for

executing the application on a cloud.

For reasoning over response time requirements, we also provide the following information that

are assumed to be acquired by studying the behaviour of the application: each message sent

through the application GUI produces, on average, two queries to the database; in the testing

environment a request took in average 50ms to execute the code in the web interface and

30ms to execute a query to the database; the testing environment was composed of virtual

machines of type hp_cloud_services.2xl.

In order to demonstrate the new capability of SeaClouds Deployer component to manage

application deployments on PaaS, we also impose the requirement “the application server

where chat-webApplication.war must be deployed in a PaaS provider”.

4.1 Add new application

SeaClouds Dashboard provides a user friendly wizard to define and configure all the required

parameters to deploy a new application.

18 D5.3 – Implementation of the User Interface

 New application properties 4.1.1

In the first step of the wizard (see Figure 2) the user set the application name, some properties

needed for the optimization properties and the business rules that apply when the QoS

constraints are not fulfilled.

The optimization properties are not mandatory, but they should be filled if the user wants

SeaClouds to optimize the distribution of the different components of the application into the

suitable cloud offerings. These properties are:

• Response Time: desired maximum response time of the application in milliseconds.

• Availability: desired availability over a month of the application.

• Cost: maximum estimated budget, in euros per month.

• Workload: average requests per second.

The Section 2.3.1 contains more details about these properties.

If the desired response time and availability are filled, they will be used to generate an SLA

agreement that the developer, as an Application Provider, is willing to offer. The business rules,

when filled, are used in the business values of the agreement, usually penalties that the

Application Provider will incur if the QoS is not fulfilled. Refer to deliverable D4.4 [7] about the

approach SeaClouds projects takes about the management of SLAs.

19 D5.3 – Implementation of the User Interface

Figure 2: New application properties

 Topology designer 4.1.2

In this step, the user describes the components of the application, the use dependencies of the

components and the requirements of each component. The user must depict a graph of the

application (see Figure 3), where:

• Each component is represented by a graph node. To add a node, the user must select

the appropriate kind of component in the palette.

• A relationship between two modules A and B is represented by an arc from A to B,

meaning “A depends on B”. To create a relationship, the user must select the “Link” tool

or press the Shift key and drag from node A to node B.

The modules are configured through an individual form, like shown in Figure 4. This

configuration includes technological requirements (programming language, version…) and non-

functional requirements, including information about the cost, location and QoS constraints.

20 D5.3 – Implementation of the User Interface

Figure 3: Design of the topology

Once all this information is filled in, the user can keep adding more components in the same

way.

In Figure 3, there is designed a simple application with two components, a web application and

a database, with a relationship where the web application uses (connects to) the database.

In the following subsections, the forms that handle the currently supported types are

described:

Each form type is composed of several field sets. For example, there is a Common fieldset,

which collects the name of the component.

Usually, each form type needs to collects information about technical requirements, non-

functional requirements and information about the desired cloud provider.

21 D5.3 – Implementation of the User Interface

Figure 4: Component details

Technological requirements

This fieldset collects about the used technology for the component. For example, a database

would need to collect the DBMS and the initialization script; a web application would need to

collect the programming language. The fields used to collect the technological requirements for

web application and databases are shown in figures Figure 5 and Figure 6 respectively.

Non-functional requirements

This fieldset (see Figure 7) collects the information about the QoS of the component. The

benchmark fields are used for the optimization process:

• Benchmarked response time: measured response time, in average, of the component.

• Benchmark platform: the platform where the response time was measured. This field

contain cloud provider platform. The user must select the one that more approximates

the actual benchmark platform.

22 D5.3 – Implementation of the User Interface

Figure 5: Web application technological requirements

Figure 6: Database technological requirements

23 D5.3 – Implementation of the User Interface

Figure 7: Non-functional requirements

Provider

This fieldset (see Figure 8) collects the information about the desired provider where to deploy

the component. The user can select between deploying in PaaS or in IaaS. This information will

be used in the matchmaking process. The IaaS selection can be narrowed specifying the number

of CPUs and the needed disk size.

The other collected field is the location, which, if selected, may be:

• Static. This means that the component will be deployed in one zone of the world:

Europe, America or Asia.

• Dynamic. This means that the location may change according to a desired policy: follow

the sun, follow the moon...

24 D5.3 – Implementation of the User Interface

Figure 8: Provider infrastructure

Relationship

The relationship form is not related to nodes, but links between components. The current form, shown

in Figure 9, only asks for the average number of calls from the source component to the target

component; this is a value needed for the optimization process.

Figure 9: ConnectTo relationship properties

25 D5.3 – Implementation of the User Interface

Figure 10: Optimization result

 Optimization result 4.1.3

Once the user has entered the topology and requirements of the application, the next step

proceeds to calculate a distribution of modules into cloud providers. This distribution is the

outcome of the planner and optimizer (see Figure 10). A default distribution, considered

optimal, is shown to the user. The user may select this or show up to four more suitable

distributions, selecting one of all these.

 New application summary 4.1.4

The step 4 (see Figure 11) is the last step of configuration, where the user can review the

deployment just before the process starts: the selected providers, cloud resources, estimated

costs and other key properties of the application. In this step, the user must enter the cloud

provider credentials and any other information needed to generate the deployment descriptor.

The “Deploy” button starts the deployment of the application, and takes us to the “Process”

view.

26 D5.3 – Implementation of the User Interface

Figure 11: New application summary

Figure 12: Deployment process

27 D5.3 – Implementation of the User Interface

 Application deployment process 4.1.1

The Step 5 (see Figure 12) only shows the deployment process with a button to go directly to

“Status” view.

4.2 Application status

This view allows the user to check all the relevant information related with each application.

 Overview 4.2.1

The Application Overview is designed to show the user the overall status of the application at a

glance. It contains a graph with the status of each Application Module.

It uses a modified version of the Topology Designer to display coloured circles around each

Application Module according to its status. An example of the Application Overview is shown in

Figure 13.

 SLA 4.2.2

The SLA view (see Figure 14) details the current SLA accomplishment, allowing the

administrator to check if the application is fulfilling the QoS and QoB requirements specified at

design time. It maintains a list of the occurred QoS violations and the list of penalties as

consequence of the aforementioned violations.

28 D5.3 – Implementation of the User Interface

Figure 13: Overview of application status

Figure 14: SLA status

29 D5.3 – Implementation of the User Interface

 Legacy monitoring 4.2.3

Brooklyn provides a basic framework to monitor application metrics. SeaClouds uses this

information to provide an alternative to Tower4Clouds as legacy mode. This view, shown in

Figure 15, is configurable by the user to define what metrics are more interesting to him.

Figure 15: Legacy monitoring

4.3 Grafana Monitoring View

SeaClouds provides an additional monitoring view to the legacy view. It uses Tower4Clouds
5
 to

define monitoring rules among with data-collectors which retrieves the information directly

from the hosts. The data-collectors push the information into Tower4Clouds where Graphite &

Grafana register is registered as an observer, in order to let the user to monitor this information

from an external application. This view is shown in Figure 16.

5
 http://deib-polimi.github.io/tower4clouds/

30 D5.3 – Implementation of the User Interface

Figure 16: Grafana monitoring view

4.4 Remove application

This section allows a user to remove the selected application. It consists in a simple dialog (see

Figure 17) to confirm the operation.

Figure 17: Remove application

31 D5.3 – Implementation of the User Interface

5 Conclusions

This document describes the work done in the context of the Task 5.3 “Implementation of the

User Interface”, ranging from M14 to M22. It is part of the series of documents to be delivered

in M24 in the context of WP5, along with D5.1.3 “Final integrated platform” [7].

The deliverable describes the User Interface in terms of architecture, technology, and format or

interchanged data with other components. It also contains a usage guide of the current

implementation.

The SeaClouds User Interface is currently available in the form described in this deliverable but

it will be continuously updated from now till the end of the project, following the continuous

integration approach we have adopted. The code of the Dashboard
6
 component will be always

available at the GitHub repository of the SeaClouds platform
7
.

6
 https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/dashboard

7
 https://github.com/SeaCloudsEU/SeaCloudsPlatform

32 D5.3 – Implementation of the User Interface

Appendix A. Topology model for Chat application

{
 "name": "WebChat application",
 "nodes": [
 {
 "name": "Chat",
 "type": "WebApplication",
 "properties": {
 "language": "JAVA",
 "artifact": "http://www.seaclouds.eu/artifacts/chat-webApplication.war",
 "min_version": "6",
 "infrastructure": "platform",
 "container": "webapp.tomcat.TomcatServer",
 "benchmark_rt": "50",
 "benchmark_platform": "hp_cloud_services.2xl"
 }
 },
 {
 "name": "MessageDatabase",
 "type": "Database",
 "properties": {
 "category": "database.mysql.MySqlNode",
 "artifact": "http://www.seaclouds.eu/artifacts/create-message-database.sql",
 "min_version": "5.0",
 "max_version": "5.0",
 "disk_size": "50",
 "infrastructure": "compute"
 "benchmark_rt": "30",
 "benchmark_platform": "hp_cloud_services.2xl"
 }
 }
],
 "links": [
 {
 "source": "Chat",
 "target": "MessageDatabase",
 "properties": {
 "calls": "2"
 }
 },
],
 "application_requirements" {
 "response_time": "2000",
 "availability": "0.998",
 "cost": "200",
 "workload": "50"
 }
}

33 D5.3 – Implementation of the User Interface

Appendix B. Abstract Application Model for Chat application

tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03
description: WebChat application
imports:
- tosca-normative-types:1.0.0.wd03-SNAPSHOT
topology_template:
 node_templates:
 Chat:
 type: sc_req.Chat
 artifacts:
 - war: http://www.seaclouds.eu/artifacts/chat-webApplication.war
 type: tosca.artifacts.File
 requirements:
 - endpoint: MessageDatabase
 MessageDatabase:
 type: sc_req.MessageDatabase
 artifacts:
 - db_create: http://www.seaclouds.eu/artifacts/create-message-database.sql
 type: tosca.artifacts.File
 properties:
 mysql_version:
 constraints:
 - greater_or_equal: '5.0'
 - less_or_equal: '5.0'
node_types:
 sc_req.Chat:
 derived_from: seaclouds.nodes.webapp.tomcat.TomcatServer
 properties:
 java_support:
 constraints:
 - equal: true
 tomcat_support:
 constraints:
 - equal: true
 java_version:
 constraints:
 - greater_or_equal: '6'
 resource_type:
 constraints:
 - equal: platform
 sc_req.MessageDatabase:
 derived_from: seaclouds.nodes.database.mysql.MySqlNode
 properties:
 disk_size:
 constraints:
 - greater_or_equal: '50'
 resource_type:
 constraints:
 - equal: compute
groups:
 operation_Chat:
 members:
 - Chat
 policies:
 - QoSInfo:
 execution_time: 50 ms
 benchmark_platform: hp_cloud_services.2xl
 - dependencies:
 operation_MessageDatabase: '2'
 - QoSRequirements:
 response_time:
 less_than: 2000.0 ms
 availability:

34 D5.3 – Implementation of the User Interface

 greater_than: 0.998
 cost:
 less_or_equal: 200.0 euros_per_month
 workload:
 less_or_equal: 50.0 req_per_min
 operation_MessageDatabase:
 members:
 - MessageDatabase
 policies:
 - QoSInfo:
 execution_time: 30 ms
 benchmark_platform: hp_cloud_services.2xl
 - dependencies: {}

35 D5.3 – Implementation of the User Interface

References

[1]. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds Consortium), February

2015.

[2]. SeaClouds Project. Deliverable D2.1 Requirements for the SeaClouds Platform (SeaClouds

Consortium), February 2015.

[3]. SeaClouds Project. Deliverable D4.5 Unified dashboard and revision of cloud API (SeaClouds

Consortium), February 2015.

[4]. SeaClouds Project. Deliverable D5.2.1 Design of the User Interface (SeaClouds Consortium), October

2014.

[5]. SeaClouds Project. Deliverable D5.2.2 Final design of the User Interface (SeaClouds Consortium),

March 2015.

[6]. SeaClouds Project. Deliverable D3.2 Discovery, design and orchestration functionalities (SeaClouds

Consortium), April 2015.

[7]. SeaClouds Project. Deliverable D5.1.3 Final integrated platform (SeaClouds Consortium), September

2015.

[8]. Apache Brooklyn, https://brooklyn.incubator.apache.org 2015

[9]. SeaClouds Project. Deliverable D4.4 Dynamic QoS Verification and SLA Management Approach

(SeaClouds Consortium), March 2015.

