
 1 D6.4.2 - Case Studies Preliminary implementation

SeaClouds Project

D6.4.2 - SeaClouds periodic evaluation
reports

Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based

applications

Call identifier FP7-ICT-2012-10

Grant agreement no. 610531

Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP6 Case Studies implementation and Validation
Deliverable code D6.4.2
Deliverable Title SeaClouds periodic evaluation reports
Nature Report
Dissemination Level Public
Due Date: M24
Submission Date:
Version: 1.0
Status Draft
Author(s): Francesco D’Andria (Atos),
Reviewer(s) Ernesto Pimentel (UMA), Antonio Brogi (UPI)

2 D6.4.2 - SeaClouds periodic evaluation reports

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

 Public X

 Restricted to other programme participants (including the Commission)

 Restricted to a group specified by the consortium (including the Commission)

 Confidential, only for members of the consortium (including the Commission)

3 D6.4.2 - SeaClouds periodic evaluation reports

Table of Contents

1. Executive Summary .. 4

2. Introduction ... 5

3. Functional Evaluation ... 6

4.1 Evaluation Scenario ES01: Local environment .. 7

4.2 Evaluation Scenario ES02: Cloud environment ... 8

4. Non-Functional Evaluation ... 19

4.1 Documentation Testing ... 19

4.2 Installation Testing .. 20

4.2.1Local Installation test .. 20

4.2.2Local and Cloud Installation test ... 24

4.3 Interoperability testing ... 25

4.3.1Int.1.1 .. 26

4.3.2Int.1.2 .. 26

4.3.3Int.1.3 .. 27

4.4 Usability Testing .. 28

4. Conclusions and next steps .. 35

5. References .. 36

Annex A. Applications descriptions .. 37

A1. ATOS Case Study ... 37

A2. NURO Case Study .. 39

Annex B. Testing Tools/Software .. 41

B1. HTTP link checkers .. 41

B2. Specific testing tools ... 41

B3. Web-services testing tools .. 42

B5. Tools for Performance/Scalability testing .. 42

Annex C. Test results report format ... 43

4 D6.4.2 - SeaClouds periodic evaluation reports

1. Executive Summary

The task 6.3 of the WP6 is responsible for making an assessment of the quality
(effectiveness, efficiency and user satisfaction) of the SeaClouds platform solution,
evaluating it from qualitative and quantitative points of view.

This deliverable, the D6.4.2, is the second version of the D6.4.X saga. It will implement the
testing activity and reports the results of tests introduced in the D6.4.1 [1], where testing
methodology was introduced.

Also, additional information about the different testbeds set-up to validate SeaClouds is
added.

5 D6.4.2 - SeaClouds periodic evaluation reports

2. Introduction

The task 6.3 of the WP6 is responsible for the evaluation of the SeaClouds software

platform. The Deliverable D6.4.2 includes the results of the first cycle of evaluation

measurements and analysis of SeaClouds, evaluating both quantitative and qualitative

requirements.

After the selection of tests methods and evaluation scenarios, defined in the deliverable

D6.4.1 [1], it is now necessary to define a selection of tools and testbed set-ups to execute

those tests and evaluate if the proposed SeaClouds solution fulfills the different

requirements defined at the beginning of the project. This deliverable is strongly connected

to WP2 to WP5:

 WP2 and WP6 define the technical requirements for SeaClouds. The technical

requirements are based on a set of use cases, developed by the partners of the

project. The WP2 also highlight the SeaClouds high-level architecture.

 WP3 and WP4 are the responsible of the low-level design and implementation of the

SeaClouds design-time and run-time tools. Both components are going to be tested

in the context of the WP6.

 The WP5 is responsible for the low-level design and implementation of the

SeaClouds GUI.

The conclusions of this document will help to see the actual status of the project and what it

is still missing to fulfil the requirements and objectives defined at the beginning of it.

This document is organized as follows:

Section 3 introduces the results of the functional evaluation. A detailed description of all

these tests, and the reason way they are done can be found in deliverable D6.4.1 [1]. The

objective in this case is to see if SeaClouds fulfils all the functional requirements established

at the beginning of the project in deliverable D2.1 [2].

Section 4 presents the results of the non-functional evaluation. A detailed description of all

these tests, and the reason way they are done can be found in deliverable D6.4.1 [1]. The

objective in this case is to see if SeaClouds fulfils all the non-functional requirements

established in D6.4.1.

6 D6.4.2 - SeaClouds periodic evaluation reports

3. Functional Evaluation

The functional evaluation of SeaClouds tries to verify if the software solution as result of this
project fulfils the functional requirements established at the beginning of it.

These functional requirements were defined in the deliverable D2.1 – Resubmission [2]. In
D2.1 the SeaClouds consortium defined also a list of Use Cases that include a list of steps,
which define interactions between actors and the SeaClouds platform as well the internal
interactions performed by the SeaClouds platform to provide the overall functionalities.

In this deliverable two different evaluation scenarios (SeaClouds deployment configurations)
will be defined to test the SeaClouds functionality: local installation, cloud installation.

Table 1: Use cases for local testbed

UC Local Test Bed

UC1 Design an Application

UC2 Show Cloud offers

UC3 Produce Deployment Plans

UC4 Generate SLA Agreement

UC5 Deploy an Application (on a Iaas and on a PaaS)

UC6 Monitor an Application

UC7 Evaluate Management Policies

UC8 Re-plan Application Deployment

UC9 Migrate Application

Table 2: Use cases for cloud testbed

UC Cloud Test Bed

UC1 Design an Application

UC2 Show Cloud offers

UC3 Produce Deployment Plans

UC4 Generate SLA Agreement

UC5 Deploy an Application (on a Iaas and on a PaaS)

7 D6.4.2 - SeaClouds periodic evaluation reports

UC6 Monitor an Application

UC7 Evaluate Management Policies

UC8 Re-plan Application Deployment

UC9 Migrate Application

4.1 Evaluation Scenario ES01: Local environment

<quite short introduction of the testbed… something like what Andrea showed during the last

integration meeting … two Vms installed locally.. where is locate each SeaClouds component… a

diagram may help>

Use Case ID LUC1

Use Case Name Design an Application

Purpose The purpose of this test is design the topology of an application

using the SeaClouds GUI <please feel free to add new text>

Initiator The Software Developer

Primary Actor The Software Developer

Additional Actors SeaClouds Operator?

Description <please here describe the test>

Pre-condition I suppose the SeaClouds platform is installed correctly; the

profile is registered in SeaClouds etc

Post-condition We finally have designed the topology of the app

Use Case Functionality

Sequence Please describe here the sequence….

Alternative

Use Case ID LUC2

Use Case Name Show Cloud offers

Purpose The purpose of this test is Show Cloud offers <please feel free to

8 D6.4.2 - SeaClouds periodic evaluation reports

add new text>

Initiator The Software Developer

Primary Actor The Software Developer

Additional Actors SeaClouds Operator?

Description <please here describe the test>

Pre-condition I suppose the SeaClouds platform is installed correctly;

the profile is registered in SeaClouds etc

we have designed a valid application topology

Post-condition We finally have cloud offers

Use Case Functionality

Sequence Please describe here the sequence….

Alternative

4.2 Evaluation Scenario ES02: Cloud environment

The testbed has been prepared in LeaseWeb provider. It consists of two VMs with the
following characteristics:

 (cpu info)
 4GB RAM
 688GB HDD
 OS: Ubuntu 12.04

The components inside the two VMs have been distributed as shown in the following

diagram:

9 D6.4.2 - SeaClouds periodic evaluation reports

Use Case ID CEUC1

Use Case
Name

Design an Application

Purpose The purpose of this test is to design the topology and requirements of an
application using the SeaClouds GUI.

Initiator The Software Developer

Primary
Actor

The Software Developer

Additional
Actors

Description The test will cover the design of the topology of the Atos case study, which
consists of:

 Frontend module. The technical requirements are:
o Language: Java >= 7
o To be deployed on PaaS
o Container: Tomcat
o Uses the Web Services module 2 times per call in average.

 Web services module. The technical requirements are:
o Language: Java >= 7
o To be deployed on PaaS

10 D6.4.2 - SeaClouds periodic evaluation reports

o Container: Tomcat
o Uses the database 2.5 times per call in average

 Database. The technical requirements are:
o MySQL >= 5
o To be deployed on PaaS

Additionally, the following requirements have been defined:

 Maximum Response Time: 2000 ms
 Availability: 98%
 Budget per month: 200 €

The expected workload of the application is 50 requests/second.

Pre-
condition

The SeaClouds platform is correctly installed.

The browser has the SeaClouds Dashboard loaded.

Post-
condition

The topology of the application described above is correctly defined.

Use Case Functionality

Sequence 1. Click the "New application" button
2. Fill the application properties

a. Fill the application name: Atos
b. Fill the optimization properties

i. Response time: 2000
ii. Availability: 98

iii. Cost: 200
iv. Workload: 50

3. Click next
4. Define the topology

a. Click Web Application button and fill the properties for the
frontend module

i. Name: www
ii. Language: Java

iii. Min version: 7
iv. Max version: 8
v. Code container: Tomcat

vi. Provider is: PaaS
vii. Location: None

b. Click Add. The module is added
c. Click Web Application button and fill the properties for the

web services module
i. Name: ws

ii. Language: Java
iii. Min version: 7
iv. Max version: 8

11 D6.4.2 - SeaClouds periodic evaluation reports

v. Code container: Tomcat
vi. Provider is: PaaS

vii. Location: None
d. Click Add. The module is added
e. Click Database button and fill the properties for the database

i. Name: db
ii. Category: MySQL

iii. Min version: 5
iv. Max version: 5.6
v. Provider is: PaaS

vi. Location: None
f. Click Add. The module is added.
g. Shift+Click on www and drag to ws; fill the properties for the

link
i. Average number of calls: 2

h. Click Edit. The link is added.
i. Shift+Click on ws and drag to db; fill the properties for the link

i. Average number of calls: 2.5
j. Click Edit. The link is added.

The result is shown in the following figure:

Alternative

Use Case ID CEUC2

Use Case
Name

Show Cloud offers

12 D6.4.2 - SeaClouds periodic evaluation reports

Purpose The purpose of this test is to check that the cloud offerings provided by the
planner match the technical requirements expressed in the topology.

Initiator The Software Developer

Primary
Actor

The Software Developer

Additional
Actors

Description The test will cover the correctness of the plans generated by the planner for
the application topology of the Atos case study. The generated plans should
contain offerings matching the application requirements.

Pre-
condition

The SeaClouds platform is correctly installed.

The browser has the SeaClouds Dashboard loaded.

We have designed a valid application topology.

Post-
condition

An Abstract Application Model (AAM) is generated, is specified in TOSCA
and contains the technical requirements expressed in the topology.

We finally have a set of cloud offers that matches the application
requirements.

 For www module, a PaaS offering Java >= 7
 For ws module, a PaaS offering Java >= 7
 For mysql module, a PaaS offering mysql >= 0

Use Case Functionality

Sequence 1. Create application topology as in CEUC1.
2. Click next
3. Review generated Abstract Application Model
4. Review offerings provided by planner

Alternative

Result The AAM is generated. It contains the technical requirements expressed in
the topology.

The planner does not return a set of cloud offerings. The needed feature is
implemented but not integrated.

Use Case ID CEUC3

Use Case Produce Deployment Plans

13 D6.4.2 - SeaClouds periodic evaluation reports

Name

Purpose The purpose of this test is checking that a deployment plan expressed in
TOSCA is generated for the plan selected by the user.

Initiator The Software Developer

Primary
Actor

The Software Developer

Additional
Actors

Description The test will cover the generation of a deployment plan following the TOSCA
specification, which should declare that each module is going to be
deployed in the selected offering, the SLA agreement and the monitoring
rules.

Pre-
condition

The SeaClouds platform is correctly installed.

The browser has the SeaClouds Dashboard loaded.

The user has designed a valid application topology.

The user has selected a plan.

The user have entered the credentials of the cloud providers

Post-
condition

A Deployable Application Model (DAM) is generated, is specified in TOSCA
and contains the cloud offerings selected by the user.

The credentials for each provider are included in the DAM.

An identifier of the generated monitoring rules is included in the DAM.

An identifier of the generated SLA agreement is included in the DAM.

Use Case Functionality

Sequence 1. Select plan as in CEUC2.
2. Click next
3. Enter provider credentials
4. Click deploy

Alternative

Result This use case cannot be evaluated because it depends on CEUC2. The
needed feature is implemented but not integrated.

Use Case ID CEUC4

14 D6.4.2 - SeaClouds periodic evaluation reports

Use Case
Name

Generate SLA Agreement

Purpose The purpose of this test is checking that a WS-Agreement agreement is
generated.

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description This test will cover the correctness of the SLA agreement generated for the
ATOS case study.

Pre-condition The SeaClouds platform is correctly installed.

The browser has the SeaClouds Dashboard loaded.

The user has designed a valid application topology.

The user has selected a plan.

Post-condition An agreement following WS-Agreement is generated.

It contains a guarantee term to assess the desired availability of the
application.

It contains a guarantee term to assess the desired response time of the
application.

Use Case Functionality

Sequence 1. Select plan as in CEUC2.
2. Click next
3. Click check SLA agreement

Alternative

Result This use case cannot be evaluated because it depends on CEUC2. The
needed feature is implemented but not integrated.

Use Case ID CEUC5

Use Case
Name

Deploy an Application on a PaaS

Purpose The purpose of this test is checking the correct deployment of the
deployment plan.

15 D6.4.2 - SeaClouds periodic evaluation reports

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description This test will cover the deployment of an application in PaaS providers. The
topology of the Atos case study defined all the modules to be deployed on
PaaS.

Pre-condition The SeaClouds platform is correctly installed.

The browser has the SeaClouds Dashboard loaded.

The user has designed a valid application topology.

The user has selected a plan where all providers are PaaS providers.

Post-
condition

Module www is deployed.

Module ws is deployed.

A MySQL service for the mysql module is created.

The endpoint of ws has been configured for www

The MySQL service has been bound to ws.

The endpoint, database and credentials of the service have been
configured for ws.

Use Case Functionality

Sequence 1. Select plan as in CEUC2.
2. Click next
3. Enter provider credentials
4. Click deploy

Alternative

Result This use case cannot be evaluated because it depends on CEUC2. The
needed feature is implemented but not integrated.

Use Case ID CEUC6

Use Case
Name

Monitor an Application

Purpose The purpose of this test is checking that SeaClouds is able to monitor a

16 D6.4.2 - SeaClouds periodic evaluation reports

deployed application.

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description This test will cover the monitoring of the application by Tower 4Clouds and
the visualization of the monitoring metrics in the SeaClouds dashboard.

Pre-condition A deployed application

Post-
condition

The status view of the dashboard show relevant metrics for the Atos case
study.

Use Case Functionality

Sequence (hablar con Adrián)

Alternative

Result The result is successful.

Use Case ID CEUC7

Use Case Name Evaluate Management Policies

Purpose The purpose of this test is checking the policies management in the
SeaClouds platform.

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description

Pre-condition

Post-condition

Use Case Functionality

Sequence

Alternative

17 D6.4.2 - SeaClouds periodic evaluation reports

Result

Use Case ID CEUC8

Use Case Name Re-plan Application Deployment

Purpose The purpose of this test is checking the replanification feature of the
SeaClouds platform.

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description

Pre-condition

Post-condition

Use Case Functionality

Sequence

Alternative

Result The feature is not implemented.

Use Case ID CEUC9

Use Case Name Migrate Application

Purpose The purpose of this test is checking the migration feature of the
SeaClouds platform.

Initiator The Software Developer

Primary Actor The Software Developer

Additional
Actors

Description

Pre-condition

18 D6.4.2 - SeaClouds periodic evaluation reports

Post-condition

Use Case Functionality

Sequence

Alternative

Result The feature is not implemented.

19 D6.4.2 - SeaClouds periodic evaluation reports

4. Non-Functional Evaluation

While the Functional Requirements specify the set of functions that the SeaClouds system or
system component must be able to perform, the Non-Functional Requirements express
desired qualities of a problem solution other than those concerning its functionality, e.g. its
robustness, its efficiency, its security, its extensibility, its maintainability, its portability, etc.

In the SeaClouds project those Non-Functional Requirements were defined in D6.4.1 [1].
Actually the chapter 5 of D6.4.1 presents a list of testing methods to evaluate the SeaClouds
platform. However, at project months 24 (PM24) the SeaClouds system is not yet mature
enough to be fully evaluated under the point of view of some of the Non-Functional
Requirements listed in D6.4.1. The following table summarizes, on one hand the tests the
consortium is going to report in this document, and the test the consortium plans to
perform at project months 30, on the other hand.

Non-Functional Requirements tests at M24 Non-Functional Requirements tests at M30

 Performance/Scalability Testing

 Stress Testing

Documentation Testing Documentation Testing

Local and in Cloud Installation Testing Local and in Cloud Installation Testing

 Regression Testing

 Long Term Testing

Interoperability testing Final Interoperability testing

Early Usability Testing Early Usability Testing

For every method described in D6.4.1, and listed in the left side on the previous table, this
chapter specifies the characteristics of the test the environment that host the execution
environment and the tools that are necessary to perform the tests (in some cases, the tests
use no tools or testbed at all, this will be clarified later).

4.1 Documentation Testing

Documentation testing means verifying that the SeaClouds documentation user manuals,
including guidelines, tutorials and on-line documentation- are easy to read and understand,
grammatically correct and technically accurate.

Test ID Documentation Testing (DT) Date 09/10/2015

Tester Michele Guerriero (Polimi) Testbed name Local Testbed and Cloud
Testbed.

SeaClouds
Platform
Version

0.8.0-SNAPSHOT

20 D6.4.2 - SeaClouds periodic evaluation reports

SeaClouds
documentation
Version

README.md from SeaCloudsPlatform 0.8.0-SNAPSHOT

https://github.com/SeaCloudsEU/SeaCloudsPlatform/blob/master/README.md

Test Results

Involved Components SeaClouds Dashboard, SeaClouds SLA, SeaClouds Monitorr
SeaClouds, SeaClouds Discoverer, SeaClouds Planner, SeaClouds
Deployer

Interaction Between
Components

Not tested here.

Passed? Yes Bug ID na

Problems: general
observations

The tested documentation just has a missing link at the beginning
under the section “Getting Started”.

Required Changes:
specific changes to be
made

Remove the missing link in section “Getting Started”

Cost Estimation Low

Comments There are no issues, everything reported in the current
(09/10/2015) documentation available from the github repository of
SeaCloudsPlatform worked fine.

4.2 Installation Testing

Installation testing verifies the correct work of the installation procedure of SeaClouds in

different configuration environments. The actual report presented here reflects conclusions

extracted from two testers in different environments and configurations: Local installation

and installation on a Cloud infrastructure.

4.2.1 Local Installation test

Test ID Local Installation Testing (LIT) Date 11/09/2015

Tester Chrsitian Tismer Testbed name Local environment/Windows

SeaClouds
Platform
Version

Milan GA Sept. 2015 Version

https://github.com/SeaCloudsEU/SeaCloudsPlatform/blob/master/README.md

21 D6.4.2 - SeaClouds periodic evaluation reports

Test Results

Involved
Components

Any SeaClouds components deployed / launched using Apache Brooklyn. We
currently support deployments against Bring Your Own Nodes (BYON) and to
all the IaaS provider supported by Apache jclouds.

Environment
characteristics

SeaClouds Windows Installation: this installation is based on the SeaClouds
installation guide:
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/usage/ins
taller
the installation is done on a laptop with this characteristics:

 Windows 8.1 (64bit)

 4GB Ram

 i3 4030u (1,9 GHz dual core)

 100GB SSD (NTFS compression on)

Pre-
requirements

Software to be installed and configured before to perform the SeaClouds

installation:

git
I have installed git 1.9.5 with global bash support
https://git-scm.com/download/win

As gui I installed TortoiseGit 1.8.14.0
https://tortoisegit.org/download/

bash
to use bash shell scripts with windows you need to install somthing
I’ve choosen the git solution (see above), Roman uses Cygwin

java sdk
Installed “jdk1.8.0_31”
http://www.oracle.com/technetwork/java/javase/downloads/index.html

maven
Maven has some issues with Blanks in pathes, thus I copied JDK to C:\bin\
I installed maven also to C:\bin\.
I need to set environment JAVA_HOME to “C:\bin\jdk….”
Also PATH needs to be extended by “...;C:\bin\apache-maven-3.3.3\bin\”
Download and further information:
https://maven.apache.org/guides/getting-started/windows-
prerequisites.html

https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/usage/installer
https://github.com/SeaCloudsEU/SeaCloudsPlatform/tree/master/usage/installer
https://git-scm.com/download/win
https://tortoisegit.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/guides/getting-started/windows-prerequisites.html
https://maven.apache.org/guides/getting-started/windows-prerequisites.html

22 D6.4.2 - SeaClouds periodic evaluation reports

virtualbox
https://www.virtualbox.org/wiki/Downloads

vagrant
https://docs.vagrantup.com/v2/installation/

Changes for the Windows deployment:

1. Prerequirenments PATH and JAVA_HOME must be done see above.
2. start.windows.sh:

this is very minimal but works for me, take care for classpath ‘:’ must be
changed to “;”

JAVA=$JAVA_HOME/bin/java

JAVA_OPTS="-Dbrooklyn.location.localhost.address=127.0.0.1
${JAVA_OPTS}"

$JAVA ${JAVA_OPTS} -Xms256m -Xmx1024m -XX:MaxPermSize=1024m \
 -classpath "conf/;patch/*;*;lib/*" \
 eu.seaclouds.SeaCloudsMain \
 launch "$@"

Installation
steps

3. git clone “https://github.com/SeaCloudsEU/SeaCloudsPlatform” to
“C:\ScEvaluation\SeaCloudsPlatform”

4. cd C:\ScEvaluation\SeaCloudsPlatform
5. mvn clean install (took 7 minutes)
6. cd usage\installer\target\seaclouds-installer-dist\seaclouds-

https://www.virtualbox.org/wiki/Downloads
https://docs.vagrantup.com/v2/installation/
https://github.com/SeaCloudsEU/SeaCloudsPlatform

23 D6.4.2 - SeaClouds periodic evaluation reports

installer\byon
7. vagrant up (took 10 minutes)
8. cd ..
9. (created start.windows.sh based on start.sh see below)
10. (modivied VM’s to use less RAM see below)
11. bash start.windows.sh
12. http://127.0.0.1:8081/
13. used YAML from raw.githubusercontent.com/Sea...blueprints/seaclouds-

on-byon.yaml
14. http://192.168.100.11:8000/

Everything Works!

Minimize memory usage of the virtual machines

Due to memory problems with my Laptop (4GB, both VM need together
3GB) I changed the memory configuration, I set it to 512M and 1G swap.

a) Vagrantfile
changed: box.customize ["modifyvm", :id, "--memory", "1512"]
to: box.customize ["modifyvm", :id, "--memory", "512"]

b) configure swap
I logged into the vms seaclouds-0 and seaclouds-1 before I start brooklyn
(previous step 9)

I created and configured a swapfile

based on https://jeqo.github.io/blog/devops/vagrant-quickstart/

Passed? Yes

http://127.0.0.1:8081/
https://raw.githubusercontent.com/SeaCloudsEU/SeaCloudsPlatform/master/usage/installer/src/main/assembly/files/blueprints/seaclouds-on-byon.yaml
https://raw.githubusercontent.com/SeaCloudsEU/SeaCloudsPlatform/master/usage/installer/src/main/assembly/files/blueprints/seaclouds-on-byon.yaml
http://192.168.100.11:8000/
https://jeqo.github.io/blog/devops/vagrant-quickstart/

24 D6.4.2 - SeaClouds periodic evaluation reports

Problems The memory limits of my Test Laptop made it impossible to locally start
SeaClouds and the use case in parallel. The local SeaClouds installation
worked well to deploy our use case in the cloud.

Interoperation of all SeaClouds components was not finished thus some
YAML must be injected manually.

Required
Changes

Bigger test machine or reduction of SeaClouds resource consumption.

Cost
Estimation

Comments It is possible to locally install SeaClouds on a Windows machine but you need
to install some prerequired Software that is not common for this platform.

4.2.2 Local and Cloud Installation test

Installation testing verifies the correct work of the installation procedure of SeaClouds in
different configuration environments. The actual report presented here reflects conclusions
extracted from two testers in different environments and configurations: Local installation
and installation on a Cloud infrastructure.

Test ID Installation Testing (IT) Date 09/10/2015

Tester Michele Guerriero (Polimi) Testbed name Local Testbed and Cloud
Testbed.

SeaClouds
Platform Version

0.8.0-SNAPSHOT

Test Results

Involved Components SeaClouds Dashboard, SeaClouds SLA, SeaClouds Monitorr
SeaClouds, SeaClouds Discoverer, SeaClouds Planner, SeaClouds
Deployer

Environment
characteristics

 Local Installation:
 Intel Core i7-4500U

 8GB DDR3 L Memory

 Ubunut 14.04

 Cloud Testbed: AWS-EC2 m3.medium instances (one for
each of the involved components).

Interaction Between
Components

Not tested here.

25 D6.4.2 - SeaClouds periodic evaluation reports

Installation steps
The steps followed are those reported in the README.md into the
SeaCloudsPlatform github repository in date 09/10/2015.

Passed? YES

Problems NONE

Required Changes

Cost Estimation

Comments All the components were successfully installed and were
reachable both installing the platform locally and on AWS-EC2.

4.3 Interoperability testing

Interoperability is the “ability to work with other systems”. In the context of SeaClouds this
means that component integration with external legacy applications, middleware or COTS
components should be guaranteed. In this context the role of standards is primary and then
we should consider if:

• We are using standardized (open) protocols
• We are proposing extensions, which conform with the protocol
• We are trying to standardize them

In order to better steer the evaluation phase, we will identify specific aspects of
interoperability that are relevant with respect to SeaClouds requirements.

We pointed out to two different critical points:

• Internal interoperability. Related to the communication between internal modules
belonging to the SeaClouds system: the Deployer Component and a light version of
the MODAClouds Monitoring Platform
(http://www.modaclouds.eu/software/monitoring/).

• External interoperability. Related to the communication with other systems that
useful to exploit SeaClouds capabilities: the Discover Component and Paasify
(http://www.paasify.it/vendors) and CloudHarmony (https://cloudharmony.com/)
services.

Table 3: interoperability scenarios

Scenario Id Scenario Description
Int.1.1 Tests will be performed to evaluate the communication between the Deployer

Component and a light version of the MODAClouds Monitoring Platform
Int.1.2 Tests will be performed to evaluate the communication between the Discover

Component and Paasify.

Int.1.3 Tests will be performed to evaluate the communication between the Discover
Component and CloudHarmony .

http://www.modaclouds.eu/software/monitoring/
http://www.paasify.it/vendors
https://cloudharmony.com/

26 D6.4.2 - SeaClouds periodic evaluation reports

4.3.1 Int.1.1

Table 4: Results of the Interoperability Test Int.1.3

Test ID Int.1. Date 09/10/2015

Tester Michele Guerriero Testbed ID Local Testbed

SeaClouds
Version

0.8.0 -SNAPSHOT

Test Results

Involved
Components

SeaClouds Dashboard, SeaClouds SLA, SeaClouds Monitor, SeaClouds
Planner.

Interaction
Between
Components

The SeaClouds Dashboard automatically install the required monitoring
rules for a given application into Tower 4Clouds at deploy time. In the
meanwhile the SeaClouds Dashboard also triggers the deploy of the
application coupled with all the required data collectors. When the
monitoring rules are installed the Dashboard notifies the SeaClouds SLA
which at this point starts the SLAs enforcement process by observing the
violations occurring on the conditions specified over some QoS metrics. In
the meanwhile a the reconfiguration-data-collector monitor the status of
each managed application and if one goes down an Tower 4Clouds
automatically triggers the replanning process.

Passed? Partially Bug ID

Problems The SeaClouds Dashboard currently does not generate automatically the
required monitoring rules.

The replanning process is still not implemented and currently it can be
just triggered.

Required
Changes

Having the SeaClouds Planner integrated with the SeaClouds DAM
Generator and with the Dashboard.

Implement the replanning process after the replanning is triggered

Cost Estimation 1 month and an half of implementation.

Comments -

4.3.2 Int.1.2

Table 5: Results of the Interoperability Test Int.1.2

Test ID Int.1.2 Date 30/09/2015

27 D6.4.2 - SeaClouds periodic evaluation reports

Tester Paolo Cifariello Testbed ID Local Installation (LI)

SeaClouds Version 0.8.0 (According to github pom file)

Test Results

Involved Components PaaSify spider, PaaSify, SeaClouds Discoverer (crawler
manager and CORE).

Interaction Between
Components

The crawler manager of the Discoverer triggers the PaaSify
spider to retrieve the list of cloud offerings and their metrics
from PaaSify. The PaaSify spider interacts with PaaSify by
cloning the github repository where the cloud offerings are
located. The cloud offerings in PaaSify are represented using
a JSON format. The spider converts the offerings into TOSCA
YAML, and sends it to the CORE discoverer, which stores it in
the repository of the SeaClouds discoverer.

Passed? YES Bug ID -

Problems None.

Required Changes Synchronize the taxonomy (e.g. metrics naming, cloud
offering naming,etc.) with the rest of components of
SeaClouds.

Cost Estimation -

Comments -

4.3.3 Int.1.3

Table 6: Results of the Interoperability Test Int.1.3

Test ID Int.1.3 Date 30/09/2015

Tester Simone Zenzaro Testbed ID Local Installation (LI)

SeaClouds Version 0.8.0 (According to github pom file)

Test Results

Involved Components CloudHarmony spider, CloudHarmony, SeaClouds Discoverer
(crawler manager and CORE).

Interaction Between
Components

The crawler manager of the Discoverer triggers the
CloudHarmony spider to retrieve the list of cloud offerings
and their metrics from CloudHarmony. The CloudHarmony

28 D6.4.2 - SeaClouds periodic evaluation reports

spider uses the RESTful API provided by CloudHarmony to
interact with it, through HTTP/REST protocol. The spider
converts the offerings into TOSCA YAML, and sends it to the
CORE discoverer, which stores it in the repository of the
SeaClouds discoverer.

Passed? Partially Bug ID

Problems Some of the offerings provided by CloudHarmony are
currently not retrieved

Required Changes Retrieve all the offerings of CloudHarmony and improve the
list of metrics it gets.

Cost Estimation 1 month of refactoring.

Comments -

4.4 Usability Testing

Through time many definitions for usability have been proposed. Two of the most
established definitions can be found in international standard for the evaluation of software
ISO 9241-11 [1] and ISO 9126 [4].

The Guidance on usability in ISO 9241-11 outlines the usability as “the level to which a
(software) product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use”.

On the other hand, in the standard ISO 9126, usability is defined as “the capability of a
software product to be understood, learned, used and attractive for the user, when it is
used under specified conditions”. In depth, usability studies relate to evaluating a product
by testing it on representative users while they focus not only on how well users can learn
and use a product to achieve their goals but also on how satisfied users are with that
process. This can be seen as an irreplaceable usability practice since it gives direct input on
how real users use the system. Usability studies examine three principles: effectiveness,
efficiency and overall satisfaction of the user. [6]

In the context of the SeaClouds project usability testing is a perceptual test depending of the
tester. No tasks are done in an automatic way. It is important to note that the testers could
use one of the testbeds to perform the usability tests or to install the SeaClouds platform in
a virtual machine (similar to the installation test). Due to the subjectivity of this test, it is
going to be performance by at least two different partners of the project.

Test ID Usability Testing 1 (UT1) Date Week 46 2015

Tester Christian Tismer (Nuro) Testbed name Cloud Testbed

29 D6.4.2 - SeaClouds periodic evaluation reports

SeaClouds
Platform
Version

Presentations Cloud Deployment of Oktober 2015

Test Results

Involved
Components

SeaClouds Designer, SeaClouds Dashboard, SeaClouds Monitor

Interaction
Between
Components

The integration between the Components was not finalized at testing
time thus the focus is “Designer” look and feel and “Monitoring”
interaction with the NURO case study. Optimizer, Deployment and
Replanning is out of focus of this test.

SeaClouds Dashboard

- Design Wizard: intuitively and fun to use, modules and
parameters are suitable for this research level implementation.
A real world implementation needs more modules, e.g. load
balancer and refined parameters

Figure 1 SeaClouds Application Wizzard

- “Application Model” generation: a great advantage to the
previous version. Intuitive and easy to use.

30 D6.4.2 - SeaClouds periodic evaluation reports

Figure 2 SeaClouds proposed Deployment Candidate Models

- APP Status Overview: intuitively to use

Figure 3 SeaCloud APP Status Overview

- Grafana Monitoring: Worked basically, feels not integrated to
the dashboard

31 D6.4.2 - SeaClouds periodic evaluation reports

SeaClouds Deployment

Deployment was tested by the partners, it is reported, NURO case
study was deployed successfully to all desired test beds.

- private deployment: succeeded

- IaaS deployment: succeeded

- PaaS deployment: succeeded

Figure 4 SeaClouds pre deployment summary

SeaClouds Monitor

Configuration of the monitoring was supported by POLIMI

- accessing NURO sensor: succeeded

- accessing NURO effector: succeeded

- trigger violations: succeeded

NURO simulator and SeaClouds monitoring call the same effector to
log events.

Figure 5 Extract from NURO's analytics: Documented simulation with violation

This figure is an extract of NURO’s runtime analytics. It represents the
metrics of a time group. In this case the analytics of a minute interval.
The messages were send to the effector by the NURO simulator and
the SeaClouds monitoring.

32 D6.4.2 - SeaClouds periodic evaluation reports

Passed? Yes / Partialy Bug ID

Problems Due to the maturity of the system, interoperation between the
components was not final at the testing time. Human interaction was
needed where in the final version the processing should be
automated.

Required Changes None, SeaClouds development team works on the integration.

Cost Estimation

Comments Reconfiguration and replaning was not tested with this test iteration.

Test ID Usability Testing 2 (UT2) Date 13/11/2015

Tester Roi Sucas (ATOS) Testbed
name

Local Testbed and Cloud Testbed

SeaClouds Platform Version 0.8.0-SNAPSHOT

Test Results

Involved
Components

SeaClouds dashboard, SeaClouds deployer, SeaClouds monitor

Interaction
Between
Components

SeaClouds Dashboard Impression

Wizard navigation Intuitive and easy to use and understand

Application
deployment model
generation

Also intuitive and easy to use. It offers a lot
of options in the definition of each
application component.

We had to do the deployment model
manually.

Grafana monitoring -not tested-

SeaClouds Deployer Impression

Deployment of the
application in different

This component deployed successfully all
the Softcare components in the selected

33 D6.4.2 - SeaClouds periodic evaluation reports

PaaS providers PaaS providers: Pivotal, Cloud Foundry and
IBM Bluemix

SeaClouds Monitor Impression

Monitoring of the
deployed components

After the deployment of the Softcare
components, those that were going to be
monitored could connect successfully with
the monitoring component.

We could also generate some violations
and check them later using different
observers.

Passed? Yes / Partially Bug ID

Problems All the SeaClouds components we used are still under development, and
most of the problems we have encountered are related with this.

SeaClouds Dashboard: Some minor bugs (overlapping issues with some
components) in the user interface of the dashboard (with Chrome):

We had to generate the deployment model manually.

 SeaClouds Deployer: We had to use this component separately in order to
use the last updates / changes needed for a PaaS deployment.

SeaClouds Monitor: Monitoring platform was also deployed manually.

Required
Changes

-

Cost Estimation -

Comments As the components are still under development we had to use the SeaClouds
tools separately.

34 D6.4.2 - SeaClouds periodic evaluation reports

35 D6.4.2 - SeaClouds periodic evaluation reports

4. Conclusions and next steps

The deliverable D6.4.2 is the second document of the D.6.4.x saga. Is has highlighted the

results of the first cycle of evaluation measurements and analysis of the SeaClouds platform,

evaluating both quantitative and qualitative requirements. The information has been

separated into two main sections; the section 3 introduced the different configurations set-

ups to perform a functional evaluation analysis while the section 4 has been devoted to

detail some non-functional evaluation analysis. Due to the fact the SeaClouds software was

not totally mature; the consortium postponed some non-functional tests to M30.

Moreover, in this document (in the Annex B) a collection of tools to be used during the

testing and validation phase of the SeaClouds project has been presented.

In summary “The initial version of the SeaClouds software solution probes a great part of

the functionality described in the deliverable D2.1 [2] although it is still missing some key

features. Once these main features will be added to the system, developers need to fix

stability problems to achieve all non-functional requirements.

From the point of view of the non-functional requirements, the situation has to be improved

in the next months. The current release of SeaClouds presents several stability issues. These

issues have not allowed performing Performance/Scalability tests as well as Long-Term

tests.

At the same time, this release is nothing more than a demo version, it proves that a set of

specific functionality can be done, but it is far from a product that can be used effectively

and in an user-friendly and productive environment.

Non-Functional Requirements tests at
M30

Performance/Scalability Testing

Stress Testing

Documentation Testing

Local and in Cloud Installation Testing

Regression Testing

Long Term Testing

Final Interoperability testing

Early Usability Testing

36 D6.4.2 - SeaClouds periodic evaluation reports

5. References

[1]. SeaClouds D6.4.1 - SeaClouds periodic evaluation reports http://www.seaclouds-

project.eu/deliverables/SEACLOUDS-D6.4.1_SeaClouds_periodic_evaluation_reports.pdf

[2]. SeaClouds D2.1. Requirements for the SeaClouds Platfrom: http://www.seaclouds-

project.eu/deliverables/SeaClouds-D2.1-Requirements_for_the_SeaClouds_Platform.pdf

[3]. SeaClouds D6.1. Case study extended description http://www.seaclouds-

project.eu/deliverables/SeaClouds-D6.1-Case_study_extended_description.pdf

[4]. ISO 9241-11:1998, Ergonomic requirements for office work with visual display terminals

(VDTs) – Part 11: Guidance on usability, Retrieved from

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=16883.

[5]. ISO/IEC 9126:1991. Information Technology - Software Product Evaluation - Quality

Characteristics and Guidelines for the User.

[6]. https://en.wikipedia.org/wiki/Usability_testing

[7]. Initial architecture and design of the SeaClouds Platform http://www.seaclouds-

project.eu/deliverables/SeaClouds-D2_2-

Initial_architecture_and_design_of_the_SeaClouds_platform.pdf

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D6.4.1_SeaClouds_periodic_evaluation_reports.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D6.4.1_SeaClouds_periodic_evaluation_reports.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2.1-Requirements_for_the_SeaClouds_Platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2.1-Requirements_for_the_SeaClouds_Platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-Case_study_extended_description.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-Case_study_extended_description.pdf
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=16883
https://en.wikipedia.org/wiki/Usability_testing
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf

37 D6.4.2 - SeaClouds periodic evaluation reports

Annex A. Applications descriptions

To test the effectiveness and functionality of the SeaClouds platform, the tests are going to

be performed by real applications in typical usage scenarios. These applications are going to

be provided by the two Case Study partners of the project: ATOS and NURO Game.

A1. ATOS Case Study

The ATOS case study is about an e-health and social networking application system
composed by several applications and modules that aim to easy the lives of elderly people,
and also the work of the social workers and doctors that take care of them. The applications
that compose this solution are the following:

 Desktop application:

This .NET desktop application will be used by each one of the elderly users. It is ready to be
deployed in PCs or small devices, and it is responsible for collecting the medical of these
elderlies. This application is also responsible for offering them all the multimedia and social
content of the solution.

 Web services application:

This java Web application is responsible of the main logic of the application components. It
is also responsible for the connections with the main database.

 SoftCare Web GUI applications:

o Users application:

This web application will offer most of the services offered by the desktop application, like
the medical data collection.

o Administration application:

This java Web application will be used by social workers and doctors in order to do the
follow-up of the elderly people, and also to assign them social and multimedia content.

 SoftCare Database:

This database stores the data of all users, including the medical data of the elderlies. This
implies that the database has to be stored in a private environment that ensures a correct
management of the privacy and confidentiality of the stored data.

 Forum Web application & database:

This java Web application is responsible for maintaining a forum service for elderly people,
their families and friends.

 Multimedia repository application:

Finally, this application is responsible for the management of the multimedia content that is
offered to the elderly people.

The architecture of this solution is depicted in the next image:

38 D6.4.2 - SeaClouds periodic evaluation reports

Figure 6: ATOS Case Study architecture – SoftCare solution

The SeaClouds platform will be used to design, deploy and manage all the previous
described Softcare applications / components, except the desktop application for elderly
people, which is out of the SeaClouds scope.

39 D6.4.2 - SeaClouds periodic evaluation reports

A2. NURO Case Study

Nurogames GmbH (NURO) is a software development company focused on high quality games,

gamification solutions and research. Both, customers’ products and their own productions are on

the market and in

deployment state.

The NURO case study is

based on their game

servers engine, a typical

so called LAMP solution

(Linux Apache MySQL

Php) a popular open

source based technique

for webserver based

applications.

Game clients interact via

HTTP(S) with the server.

The server application processes the client requests and stores the persistent data.

Cost efficiency and performance are the decisive factors for the choice of deployment setup.

Games have a very volatile usage with regional, cultural, daytime and event based influences.

The NURO cases study is focused to

find by the SeaClouds System a simple

to use tool to find the best deployment

solution for the game and adjust it to

the games’ needs. A mix of private and

multi cloud resources should be

possible.

 To evaluate this NURO implemented a

simplified server based on their

engines.

In the simple Setup it consists of a

“Database” and a “PHP” module.

For this project NURO developed some

components to simulate load scenarios

and to provide an API to interact with

the seaclouds system see D6.3.2.

Based on a flexible implementation all

components can be also accessed by any web browser. The response is HTML or JSON, we

recommend the JSONview plugin to display JSON responses in a human friendly way.

Figure 7: NURO case study - techniques

Figure 8: NURO case study - modules

40 D6.4.2 - SeaClouds periodic evaluation reports

Figure 9: NURO case study - components

These D6.3.2 Components are:

 benchmark.php - Frontend to Apache benchmarking tool

 simulator.php - NURO Scenario Simulator (Under development)

 sensor.php - NURO Sensor, returns server metrics

 effector.php - NURO Effector, accepts event requests

 analytics.php - NURO Analytics, returns runtime analytics

Also a quiz game server and client have been developed, included this components and others of

NUROs engines. The quiz game has not been tested with this evaluation.

Figure 9 is an analytics result after a

simulation with a SLA violation.

Both the “NURO simulator” and the

“SeaClouds Monitoring” use the same

effector.php API to report events.

 SimulatorStart

 Violation

 SimulatorEnd

These events are reported by the

analytics.php at node:

result.analytics[3].messages

Figure 10: NURO cases study - analytics.php response

41 D6.4.2 - SeaClouds periodic evaluation reports

Annex B. Testing Tools/Software

In this deliverable and in the deliverable D6.1 several tests are presented that need to be

performed in different scenarios and SeaClouds installations. The objective is to try to

automate those tests as much as possible. The idea is to create different scripts to make the

tests automatic, to write those scripts, open source or free software tools will be used.

In the following sections possible options to perform different tasks are presented. It is the

tasks of the each person assigned to perform a test (see deliverable D6.1) to select the best

one to write the testing scripts.

B1. HTTP link checkers

There are two possible options:

 W3C Link Checker (http://validator.w3.org/checklink), only valid for public online
webpages.

 Xenu (http://home.snafu.de/tilman/xenulink.html), a Microsoft Windows application
that reports broken links for online webpages and local webpages.

B2. Specific testing tools

The following tools can help the different testers to create the necessary scripts to validate
the functionality of the SeaClouds platform.

The responsible to write a specific script should look and see what is the best option for
her/him (this option includes to use no tool at all or, just a typical scripting language such as
bash, perl, python, etc.).

The different options

 JSystem (http://www.jsystemtest.org) - It is an open source framework made in Java
to create and run different testing projects. It is a modular project that covers all the
possibility of testing, from unit tests to acceptance tests. In the specific case of the
SeaClouds project, there are modules that may be used to run tests scripts using a CLI
interfaces, to monitor computers or to test web-applications (it uses Selenium -
http://seleniumhq.org/).

 QMTest (http://www.codesourcery.com/qmtest) - Another testing management
tool. In this case it is made in python. It can test any kind of application based in its
input and output values.

 Texttest (http://texttest.carmen.se) - It is a more simple tool than the two previous
ones. It compares the log output of an application with a previous log output of what
was expected as right behaviour of the application.

 Staff (http://staf.sourceforge.net/) - It is a framework to develop testing suites. It
could be useful for the project, although it looks like a complex solution in
comparation with the previous ones.

http://validator.w3.org/checklink
http://home.snafu.de/tilman/xenulink.html
http://www.jsystemtest.org/
http://seleniumhq.org/
http://www.codesourcery.com/qmtest
http://texttest.carmen.se/
http://staf.sourceforge.net/

42 D6.4.2 - SeaClouds periodic evaluation reports

B3. Web-services testing tools

As it was commented at the beginning of this document, for several of the test maybe it is
necessary to write some web-services tests to verify the functionality of those tasks that can
not be performed using the CLI interface.

The different tools are

 SoapUI (http://www.eviware.com) - It is a open source java desktop application that,
among other features, it can perform functional, load and, compliance web-services
tests. It provides plugins for the most common Java IDES (Eclipse, Netbeans and,
Idea). There is a commercial version with extended features, but the open source
one is more than enough for our testing objectives.

 PushToTest TestMaker (http://www.pushtotest.com) - Open source tool that allows
the creation of functional tests, load tests and monitoring. It also allows the
integration of unit tests inside the framework, but it fall outside of the scope of the
WP6.

 WebInject (http://www.webinject.org/) - Open source tool written in perl that can
perform functional and regression test over web-services and web applications. The
test are written in XML and can be only performed over applications that use http or
https protocols.

B5. Tools for Performance/Scalability testing

Useful tool that can be used during the performance/scalability testing and stress testing
are:

 Apache JMeter (http://jakarta.apache.org/jmeter) - JMeter is a java application
designed to test client/server software, including web applications. JMeter can be
used to simulate heavy load in a server and to see how the system changes its
behaviour under different load conditions.

 VisualVM (https://visualvm.dev.java.net) - VisualVM is a tool to monitor and
troubleshoot Java applications. It runs on Sun JDK 6, but is able to monitor
applications running on JDK 1.4 and higher. It utilizes various available technologies
like jvmstat, JMX, the Serviceability Agent (SA), and the Attach API to get the data
and automatically uses the fastest and most lightweight technology to impose
minimal overhead on monitored applications.

http://www.eviware.com/
http://www.pushtotest.com/
http://www.webinject.org/
http://jakarta.apache.org/jmeter
https://visualvm.dev.java.net/

43 D6.4.2 - SeaClouds periodic evaluation reports

Annex C. Test results report format

This section introduces the template that the tester has to fill for each one of the tests
mentioned in the deliverable D6.1 and in this deliverable.

The table 7 includes all this categories

 Scenario ID/Quality test ID – Provides the unique identifier that refers to the
different quality tests and scenarios defined in this deliverable.

 Date – Date in which the test was completed.

 Pass/Fail – Indicate if the tests was successful passed by SeaClouds or it failed.

 Tester Name – Name of the tester that performed the different tests that are
included in the corresponding table report.

 Testbed/Machine used – Name of the testbed or machine where some requirement
of SeaClouds was tested.

 Comments about the Testbed/Machine – Any possible comment about changes or
clarification to the information about the testbed or the machine commented in this
deliverable or in the deliverable D6.1 (e.g. a new Java Virtual Machine was intalled,
new version of the operating system, etc.).

 SeaClouds version – Version of SeaClouds tested.

 Third party software used – Additional software used in the tests (e.g ATOS Use
Case, Nuro Use Case, the dummy application, etc.). It should be specified the exact
version of those applications.

 Third party testing software used – In the case the tester uses any of the tools stated
in the 0, it should be mentioned here.

 Involved Components – A list of all SeaClouds architecture components involved in
order to carry out the related test or scenario.

 Description of interactions among components – It provides a brief description
about how the different components interact to achieve the scenario/test.

 Possible problems and necessary changes – During the tests and possible changes
needed to make to the system to pass the tests in new versions of SeaClouds.

 Comments – Any helpful commentary that the tester considers necessary.

Table 7 Template to fill the results of the tests.

Scenario ID/Quality test ID

Date

Pass/Fail

Tester Name

Testbed/Machine used

44 D6.4.2 - SeaClouds periodic evaluation reports

Comments about the Testbed/Machine

SeaClouds version

Third party software used

Third party testing software used

Involved Components

Description of interactions among
components

Possible problems and necessary
changes

Comments

To fill all the results of the different tests, a web application is going to be created. The
tester will fill some forms and each test result is going to be automatically stored into a
database.

