

SeaClouds Project

D5.1.1 - Definition of the software
developing environment

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based

applications
Call identifier FP7-ICT-2012-10
Grant agreement no. 610531
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP5 Integration, infrastructure delivery and GUI
Deliverable code D5.1.1
Deliverable Title Definition of the software developing environment
Nature Report
Dissemination Level Public
Due Date: M8
Submission Date: 15th June 2014
Version: 1.0
Status Final
Author(s): Javier Cubo (UMA), Francesco D’Andria (Atos), Elisabetta Di Nitto

(Polimi), Michela Fazzolari (UPI), Iván Febles (Atos), Raffaela
Mirandola (Polimi), Diego Perez-Palacin (Polimi), Andrea Turli
(Cloudsoft), PengWei Wang (UPI)

Reviewer(s) Roman Sosa (ATOS)
Javier Cubo (UMA)

 D5.1.1 Definition of the software developing environment

2

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

 Public X

 Restricted to other programme participants (including the Commission)

 Restricted to a group specified by the consortium (including the Commission)

 Confidential, only for members of the consortium (including the Commission)

 D5.1.1 Definition of the software developing environment

3

Table of Contents

1. Executive Summary .. 5

2. Introduction ... 6

2.1 Scope and outcome of the Deliverable ... 6

2.2 Structure of deliverable... 6

3. Development and integration approach .. 7

4. Main SeaClouds components ... 9

4.1 Discoverer .. 10

4.2 Planner .. 11

4.3 Deployer .. 11

4.4 Monitor ... 12

4.5 SLA Service... 13

4.6 GUI ... 13

5. Preliminary integration plan ... 15

5.1 Dependency graph .. 16

5.2 Preliminary calendar for integration ... 17

5.3 Demo Story Board (M12) .. 18

6. Development repository ... 21

7. Supporting tools .. 23

8. Conclusions ... 25

9. References .. 26

 D5.1.1 Definition of the software developing environment

4

List of Figures

FIGURE 1. SEACLOUDS PLATFORM ARCHITECTURE ... 9
FIGURE 2. SEACLOUDS PLATFORM INTEGRATION PLAN ... 16
FIGURE 3. SOFTWARE COMPONENT’S DEPENDENCIES AND DEVELOPMENT ROADMAP ... 17
FIGURE 4. M12 SOFTWARE COMPONENTS ... 17
FIGURE 5. M24 SOFTWARE COMPONENTS ... 18

 D5.1.1 Definition of the software developing environment

5

1. Executive Summary

This deliverable presents the first version of the SeaClouds integration plan. It describes the
integration approach that will be followed during the project as well as the development
repository and the supporting tools for the development and the integration. The description of
the main components of the SeaClouds architecture together with the preliminary calendar for
their integration are also described in the document.

 D5.1.1 Definition of the software developing environment

6

2. Introduction

2.1 Scope and outcome of the Deliverable

The SeaClouds platform is composed of various parts delivered by the workpackages WP3, WP4
and WP5 under the responsibility of various different partners of the SeaClouds consortium.
The purpose of this deliverable is to ensure that the development of such platform occurs in a
coordinated way. The development approach will be based on two main principles:

 Coordinate development to ensure gradual, seamless and continuous integration. The
objective is to avoid the typical ‘big bang’ integration problem and to ensure that
mismatches are discovered and fixed as early as possible. The tools used to ensure such
coordination are the plan defined in this document and the adoption of a continuous
integration platform.

 Develop the system as an open source project since the very beginning. The purpose is
to ensure that the project gradually acquire visibility in the community. The tool to do so
is the adoption of github as repository, wiki, and bug tracking system.

Consistently with these principles, this deliverable defines the toolset adopted for the
development of the SeaClouds platform and the integration plan together with a preliminary
timeline.

2.2 Structure of deliverable

The document is structured as follows:

 Section 3 describes the approach followed in the development of the SeaClouds
software platform.

 Section 4 summarises the main components of the SeaClouds architecture described in
Deliverable D2.2.

 Section 5 presents the preliminary integration plan and the calendar for the integration
of the different components.

 Section 6 reports about the structure of the development repository.

 Section 7 presents an overview of existing tools that can be used as a support in the
development and integration process.

 Section 8 concludes the deliverable.

 D5.1.1 Definition of the software developing environment

7

3. Development and integration approach

The software development process follows the Continuous Integration paradigm [1,2]. This
paradigm primarily focuses on solving the –usually unpredictably long– task of system
integration. To achieve its objective, Continuous Integration proposes to build the system after
each small extension or modification of its source code. In such way, many integrations are
performed during the project development, while each of these integrations can be easily
executed. The rationale for achieving easy integrations is that each of them concerns only a
small portion of new code; hence it cannot raise many conflicts or failures.

To be confident about the successfulness of the software development process, the SeaClouds
consortium complies with the best practices proposed for the Continuos Integration. Next
paragraphs describe them.

 There will only exist one and only one source code repository that keeps and protects
the integrity of every source file necessary for the project. This repository will include:
source code of the system to build, scripts to build the system from the source code,
scripts to test the running system, etc. This source repository will be hosted at

https://github.com/SeaCloudsEU and maintained by Atos (the project coordinator).

 The system building from source files will be fully automated. It means that only a
simple operation will be needed to create a running system from the source code. All
the work that is required to build the system will be automated and launched by such
simple operation.

 Tests will be included in the source repository in order to check the goodness of each
system build. These tests will be launched just after the building and before updating
the mainline of the source code repository. This practice avoids stepping back during the
development.

 Every developer who is modifying the code will do so on a separate branch and will
commit the code as soon as it will be buildable (one commit per day could be a good
frequency). Clearly, before committing the developer will update his/her branch and
solve any conflict as needed. Failures or conflicts can still happen during the system
building or testing due to integration of commits. However, since each commit
represents only a slight variation of the system, it is expected that these problems can
be solved quickly (during the same day). Every commit comes with comments
containing a detailed description of the performed changes and updates.

 In the beginning, a functional automatic building and testing of the system will be
created in order to enable the development of the project code. While the project is
developed and more functionalities are included, these test and building processes –
even if they are fully automated- are expected to become slow activities that force
developers to waste their time. In that moment, the performance of building and test
processes will be studied. Regarding the performance of system building, there will be

https://github.com/SeaCloudsEU
https://github.com/SeaCloudsEU

 D5.1.1 Definition of the software developing environment

8

implemented approaches to speed up the process. Regarding the performance of
system testing, the most time-consuming will not be executed before the commit of
each code modification but only periodically (e.g., nightly testing).

 The concrete programing environment and its setup will be finalized in the future, yet
the descriptions of the tool for the automatic building of the system and the service
used for the continuous integration are given in Sections 5 and 6 respectively.

 D5.1.1 Definition of the software developing environment

9

4. Main SeaClouds components

In this section, we present the main components of the SeaClouds platform.

Figure 1. SeaClouds Platform architecture

The SeaClouds architecture is being defined in WP2, D2.2 [3], and ist current state is shown in
Figure 1 (it could suffer minimum changes for the firnal version of the deliverable D2.2). The
platform is composed of the following elements:

 Planner. This component works both at design time and at runtime and aims at
generating a plan for the deployment of a SeaClouds application.

 Discoverer. This component is in charge of identifying those services that can be used to
derive a plan for a SeaClouds application.

 Deployer. This component is in charge of deploying and managing the execution of a
SeaClouds application.

 Monitor. This component is in charge of monitoring the execution of a SeaClouds
application on the target clouds that have been selected for its deployment.

 SLA Service. This component is in charge of mapping the low level information gathered
from the Monitor into business level information about the fulfillment of the SLA
defined for a SeaClouds application.

 D5.1.1 Definition of the software developing environment

10

 GUI. The SeaClouds platform features the graphical user interface for two user roles of
Designers and Deployment Managers.

 SeaClouds API. Suitable application programming interfaces are defined to allow the
communication among the different SeaClouds components.

All above components are part of the SeaClouds Engine. They interact with the SeaClouds GUI
and with external systems through the SeaClouds APIs. SeaClouds is able to deploy, manage
and monitor applications on clouds that are compatible with TOSCA and CAMP. Moreover, it
will be compatible with a selected number of clouds (which will be studied in another
deliverable).

In the following of this section, we describe each component of the SeaClouds platform and
provide an indication on how it will be developed in terms of:

- programming language

- use of preexisting libraries/components

- dependencies with other components

- software interfaces technology

- license associated to the component

4.1 Discoverer

Short description The Discoverer component is in charge of identifying the available
capabilities offered by cloud providers that will be used by the
Planner component to perform the distribution process.

Programming language Possible languages: Java, PHP, Python, MySQL, PostgreSQL.

Use of preexisting
libraries/components

Parts from the matchmaking module Cloud Pier’s Lighthouse
(Cloud4SOA), Paasify repository.

Dependencies with other
components

This component does not depend directly on the interaction with
other components of the SeaClouds platform, but it rather
depends on the possibilities offered by cloud providers to easily
access to their capabilities.

Software interfaces
technology

Java, REST accessible API

License associated to the
component

Apache License 2.0

 D5.1.1 Definition of the software developing environment

11

4.2 Planner

Short description The Planner is in charge of determining a distribution of application
modules onto multiple available clouds so that the QoS properties
and other technology requirements needed for individual
application modules are not violated.

Programming language Possible languages: Java, PHP, Python, MySQL, PostgreSQL.

Use of preexisting
libraries/components

-

Dependencies with other
components

It will partly depend on the outputs of Discoverer component, i.e.,
the organization form of available cloud capabilities and SLAs.

Software interfaces
technology

Java, REST accessible API

License associated to the
component

Apache License 2.0

4.3 Deployer

Short description The Deployer component is in charge of generating a concrete
deployment plan for each target cloud platform. Concrete
deployment plans include all the needed steps to be performed to
actually deploy a (set of) application module(s) on a specific cloud
platform.

Programming language Possible languages: Java, PHP, Python, MySQL, PostgreSQL.

Use of preexisting
libraries/components

Brooklyn (with libraries Apache Whirr, a set of libraries for running
cloud services, such as Hadoop, and jClouds , an open source Java
library that supports several IaaS providers (no PaaS). At the level of
PaaS, Brooklyn could be integrated by reusing the PaaS Unified
Library of Cloud4SOA.

Dependencies with
other components

Since the plan describes the needed steps to deploy or reconfigure
the application, this component will be connected with the Planner
component. Then, this plan has to be read and approved by the
deployment manager. Also, this component interacts with the
monitoring, by executing and initializing the monitoring service and

 D5.1.1 Definition of the software developing environment

12

the SLA service (that generates the SLA agreements)

Software interfaces
technology

Java, REST accessible API

License associated to
the component

Apache License 2.0

4.4 Monitor

Short description The Monitor component is in charge of collecting monitoring
information from the targeted cloud platforms, of analyzing such
information, and of presenting the results of such analysis (through
the SeaClouds GUI dashboard) to the Deployment Manager. The
Monitor is also in charge of generating replanning triggers that are
passed (possibly filtered by Deployment Manager, depending on the
platform configuration) to the Planner in order to start a
reconfiguration process.

Programming language Possible languages: Java, PHP, Python, MySQL, PostgreSQL.

Use of preexisting
libraries/components

MODAClouds, Brooklyn

Dependencies with
other components

This component interacts with the Deployer by generating the QoS
violations, which could require a repair (no changes in the plan, only
in the live model topology), or a replanning (changes in the plan
and the topology). Therefore, this component also interacts with
the Planner component.

Software interfaces
technology

Java, REST accessible API

License associated to
the component

Apache License 2.0

 D5.1.1 Definition of the software developing environment

13

4.5 SLA Service

Short description The SLA Service is responsible for establishing, reviewing and
cancellation of complex end-to-end- Service Level Agreements (SLAs)
between Application Providers and Cloud Suppliers. It provides an
operational management with SLA composition and decomposition
across functional and organizational Cloud domains. It covers the
complete SLA and service lifecycle with consistent interlinking of
planning and runtime management aspects by implementing
procedures and methods to evaluate and report Business Level
Objectives.

Programming language Java, MySQL

Use of preexisting
libraries/components

-

Dependencies with
other components

While the Planner component will provide the inputs to create the
SLA Agreements, the Deployer component will configure and set up
the SLA Service at runtime. Finally, the Monitoring component will
generate Business Metrics to evaluate agreements.

Software interfaces
technology

Java, REST accessible API

License associated to
the component

Apache License 2.0

4.6 GUI

Short description The SeaClouds platform features the graphical user interface
(SeaClouds GUI) for two user roles (Designers and Deployment
Managers). Application Designers exploit the GUI to provide a
description of the topology of the application to be deployed, together
with a set of requirements. These requirements can include QoS
properties and technology requirements for the application modules.
Deployment Managers instead, exploit the GUI through a unified
dashboard that allows them to supervise the deployment and the
monitoring of the application.

Programming language Javascript

 D5.1.1 Definition of the software developing environment

14

Use of preexisting
libraries/components

Cisco Curvature, D3, Graphite

Dependencies with
other components

The GUI has dependencies with the main components of the
architecture (Planner, Deployer, Monitor, Discoverer and SLA
Service), as they use inputs from the GUI, or generate outputs to be
shown in the GUI.

Software interfaces
technology

--

License associated to
the component

Apache License 2.0

 D5.1.1 Definition of the software developing environment

15

5. Preliminary integration plan

As discussed in Section 2, the SeaClouds platform will be developed following a continuous
integration approach. Nevertheless, according to the Description of Work (DoW), the
integration plan aims at setting up specific milestones at which a version of the integrated
platform, containing the tools that have been developed till that point, will be released.

Figure 2 overviews the SeaClouds platform integration plan and software components
development roadmap, respectively. The figure identifies the main artifacts that will be
produced during the lifecycle of the project which are:

 Tools, that is, isolated components of the SeaClouds architecture.

 Integrated platform, that is, the solution that integrates various tools and is made
available on source forge together with proper installation and usage manuals.

 S/w platform, that is, an instance of the integrated platform installed and deployed on
the Cloud and used as a testbed. This platform is accompanied by videos and other
dissemination and training material aiming at showing how SeaClouds has been used by
the case studies.

 Case study prototypes, that is, the prototypical systems that are developed to validate
the SeaClouds results.

The first project integration activity is at M12 and will focus on obtaining the first and simplified
version of some of the key components of the SeaClouds architecture. At this point in the
project the first s/w platform, that is, the first version of the testbed available for use by the
case studies will be made available.

The second phase relevant for integration will be at M19,when we will make available the first
integrated platform.

The third phase at M24 will include all the prototypes delivered at M22 as well as the new
improvements and developments delivered in the meantime. At M24 both the new integrated
platform as well as the s/w platform will be made available and will be exploited by the case
studies for their development.

Finally, at M29 the consortium will deliver the last and final integrated Seaclouds platform and
s/w platform properly packaged for external use.

 D5.1.1 Definition of the software developing environment

16

Figure 2. SeaClouds Platform integration plan

5.1 Dependency graph

Figure 3 describes the main components of the SeaClouds architecture together with their

dependencies and dates of delivery of the prototypes implementation. Starting from the

bottom, the figure shows that the Monitor, Discoverer and Deployer components depend on

existing cloud infrastructures. The Planner component performs the activity of generating a

distribution of the different application modules onto available clouds. To this end, it depends

on the results obtained by the Discoverer -on available cloud capabilities and their SLAs- and on

triggers received by the Monitor component in case of an event that requires replanning arises.

The SLA service establishes, reviews and eventually cancels complex end-to-end SLAs between

application providers and cloud infrastructure suppliers. SLA service requires the Planner since

it provides the required inputs to establish the SLAs; the Deployer since it passes information to

configure and set up the SLA service behavior at runtime; and the Monitor since it will generate

the metrics of interest for the application to evaluate the satisfaction of agreements. The

Deployer component is in charge of deploying the application modules as suggested by the

devised plan and to this end it depends on the Planner results. The GUI allows the use of the

SeaClouds platform both to application designers and deployers and therefore it depends on all

the main components, Deployer, Planner, SLA service, Monitor and Discoverer.

 D5.1.1 Definition of the software developing environment

17

Figure 3. Software component’s dependencies and development roadmap

5.2 Preliminary calendar for integration

The first release of the software platform is at M12. For this date, a first prototype version of
Deployer, Planner and Monitor components will be released, as illustrated in Figure 4. The
Planner at this step will provide a first version of the plan using a simple static matchmaking
approach. The Deployer will use the data sent by the Planner with an asynchronous data
passing through a file. The Monitor interacts with the Planner through a REST API in case of
requirements violations. In this first release, components Deployer, Planner and Monitor will be
deployed on the same Virtual Machine. A possible storyboard for this first release is described
in Section 4.3.

Figure 4. M12 Software components

 D5.1.1 Definition of the software developing environment

18

The second release at M19 will consist of an extended version of M12 software platform,
including the prototypes released at M18. In particular, the new prototypes will be well tested
components properly packaged for external use. This release will deploy software components
on two different Virtual Machines: the first one will execute GUI, Planner, Deployer, Monitor
and SLA services; while the second one will execute the Discoverer component together with
the persistency task for models and artifacts.

At M24 the software platform will integrate the M22 prototypes and will include all the
components of the SeaClouds architecture. Figure 5 illustrates the software components with
their dependencies and the specification of the API.

Figure 5. M24 Software components

The final integrated platform will be released at M29 together with the GUI allowing its

exploitation to both SeaClouds and external users.

5.3 Demo Story Board (M12)

For M12, a first version of the NURO application will be demonstrated using the M12 SeaClouds

platform. This application is described in Deliverable D6.1 [4]. In particular, only two modules of the

application, the PHP-Worker and the database, will be taken into account and a multi-cloud solution will

be provided. There will be four allowed connections, inbound ping, inbound HTTP(S) for Client

 D5.1.1 Definition of the software developing environment

19

Requests to the PHP-Worker, one connection from PHP-Worker to the database and, if needed,

an inbound ssh connection to PHP-Worker and database. At M12 we will focus on IaaS aspects

while we will tackle PaaS at M24. The realization of the NURO application will follow the development,

deployment and execution approach defined in SeaClouds. More specifically, the team involved in the

development and operation of the application will go through the following the steps:

Step 1 Definition of the Module Profile

Step 1.a. Provide the functional requirements (hard requirements) of the two modules
belonging to the app

· Example: Technology (Java 1.6 or PHP >=5.2 or SQL BD); resources (DB=1G space,
or RAM memory; Type of service; Location

Step1.b. Provide the non-functional requirements (hard and soft requirements) of the two
modules.

· Example: Scalability: growing; Fixed, bronze; QoS: RT; Availability;

Step 2: Definition of the Abstract Plan Model

This step will occur outside the SeaClouds platform and will be based on some pre-existing
approach that will be selected in the next months. The abstract plan will be the input to the
planner service.

Step 3: Execution of the Planner Service:

At M12 services will be statically matched. The outcome of this phase will be the generation
of a Concrete Plan.

Step 4: Execution of the Deployer Service:

Step 4.a. Read the Concrete Plan

Step 4.b. Retrieve the artifacts

Step 4.c. Prepare the cloud environments

Step 4.d. Deploy the artefact on top of them

Step 4.e. Configure the application

Step 4.f. Generate and Store the Topology (Live Model)

Step 4.g. Initialize the Monitoring Service (Monitoring Rules)

Step 4.h. Initialize the SLA Service (generate SLA Agreements)

Step 5: Execution of the Monitoring Service

 D5.1.1 Definition of the software developing environment

20

Step 5.a. Monitor Application

Step 5.b. Enforce the Monitoring Rules

Step 5.c. Generate a soft QoS Violation , that is, a violation that change the Topology only,
not the plan.

Step 6: Execution of the SLA Service

Step 6.a. Ensure fulfillment of SLA Agreements

Step 6.c. Generate a QoB (Quality of Business) Violation

Step 7: Execution of the Deployer Service:

Step 7.a. Change the Topology

Step 7.b. Enforce the changes

Step 7.c. Store the new topology

 D5.1.1 Definition of the software developing environment

21

6. Development repository

In this section, we will overview the structure of the development repository that will follow
the structure of the architecture.

By “structure of the architecture”, the SeaClouds consortium means the decisions the
consortium makes concerning how the project best meets its objective. We need to consider
how to best leverage the language programming features to create a clean and effective
software. In practical terms, “structure” means making clean code whose logic and
dependencies are clear as well as how the files and folders are organized in the folders.

Here the consortium will first overview the approach followed to automatically package and
integrate the SeaClouds software and second how such software can be organized on a
common repository.

Automatic Software Packaging and Integration

Software packaging is a process that automatically integrates a diverse collection of computer
programs based on the types of components involved and the capabilities of available
translators and adapters in an environment.

SeaClouds consortium, leveraging an SOA approach, aims at releasing its code in separate (but
interdependent) modules that belog a multi-module project. In this respect, branches are
important to be created, managed and merged. This may happen whenever a new feature is
going to be introduced, a bug is fixed or an enhancement is applied.

Definitely, for a project of this scale and modularity, it is also required to use build automation
techniques.

Maven [Maven http://maven.apache.org/] is a build automation tool typically used for Java
projects. Maven serves a similar purpose to the Apache Ant tool, but it is based on different
concepts and works in a profoundly different manner. It can also be used to build and manage
projects written in C#, Ruby, Scala, and other languages. Maven is hosted by the Apache
Software Foundation, where it was formerly part of the Jakarta Project. Although it is simple to
use the command line to pass a single source module to a compiler and then to a linker to
create the final deployable object, when attempting to compile and link many source code
modules, in a particular order, using the command line process is not a reasonable solution,
and Maven as a build automation tool was used.

The typical "maven" way to organize multi-module projects is to store them hierarchically,
where your modules exist within your multi-module project. Your modules may even have
more modules within them. However, the "Eclipse" way to organize projects is in a flat manner,
where each module is a project located at the root level of your workspace.

Version Control System

http://maven.apache.org/

 D5.1.1 Definition of the software developing environment

22

The SeaClouds consortium is composed by six European partners. Their developers are not
centrally placed but dispersed throughout different countries, so the code decoupling to a
central repository is vital and therefore no client-server solution could be followed. The
consortium adopted a “Git approach” as the primary VCS system and the SeaClouds code will
be hosted in a public GitHub repository. https://github.com/SeaCloudsEU

Actually, GitHub is a web-based hosting service for software development projects that use the
Git revision control system.

https://github.com/SeaCloudsEU
http://en.wikipedia.org/wiki/Shared_web_hosting_service
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Revision_control

 D5.1.1 Definition of the software developing environment

23

7. Supporting tools

The SeaClouds consortium agreed on having a productive toolset to facilitate the
communications and the knowledge sharing.

As described on the previous section, code produced by SeaClouds project will be publicly
available at https://github.com/SeaCloudsEU. Github is a powerful collaboration, code review,
and code management for open source and private projects. This is greatly used in a variety of
successful OpenSource projects and it is particularly appreciated also because it provides
developers with a set of generic useful tools. In fact, SeaClouds consortium will also take
advantage of the Github Wiki pages, already available at
https://github.com/SeaCloudsEU/SeaCloudsPlatform/wiki, which is extremely developer-
friendly as it follows the same github workflow process to edit documentation, and Github
issues, already available at https://github.com/SeaCloudsEU/SeaCloudsPlatform/issues to keep
track of the project’s backlog.

To track the active tasks, SeaClouds consortium will evaluate trello.com. Trello is a collaboration
tool that organizes your projects into boards. In one glance, Trello tells you what's being
worked on, who's working on what, and where something is in a process.

Github integrates easily on many Continuous Integration tool. SeaClouds consortium has
identified CloudBees1 and its BuildHive cloud based continuous integration service for Github
projects. It combines cloud-powered Jenkins with your GitHub development projects. It shows
your build status on GitHub and easily verify the quality of incoming pull requests. BuildHive
and Jenkins automatically detect your build platforms so your builds and tests run seamlessly. If
Jenkins says your builds are blue, they are good-to-go.

As a collaborative editing tool, needed for example to prepare official documentation,
SeaClouds consortium will use Google Drive, a free tool that keep your files backed up and easy
to reach from any phone, tablet, or computer. It offers also live docs, also it has recency views
and tagging support for documents.

From the Google office-replacement tools, SeaClouds consortium will use private Google
calendar, where it is possible to co-ordinate meetings that can happen on Google Hangouts and
that can be integrated with Doodle2, when SeaClouds consortium need to schedule a meeting.

Seaclouds consortium is also considering to replace the current mailing list available at
seaclouds@lists.atosresearch.eu with a Private Google Group as it is easier to add members and
have access to the email history.

For real-time communication, SeaClouds identified gitter.im as a IRC-like chat based on github
accounts, so to minimizy also the need for multiple accounts. SeaClouds already setup different
chat rooms at:

1 cloudbees.com
2 doodle.com

https://github.com/SeaCloudsEU
https://github.com/SeaCloudsEU/SeaCloudsPlatform/wiki
https://github.com/SeaCloudsEU/SeaCloudsPlatform/issues
mailto:seaclouds@lists.atosresearch.eu

 D5.1.1 Definition of the software developing environment

24

 https://gitter.im/SeaCloudsEU/SeaCloudsPlatform, for public conversations

 https://gitter.im/SeaCloudsEU, for private conversations

It is also possible to create rooms per-repository (e.g. https://gitter.im/SeaCloudsEU/WP3) for

sub-project specific chat.

https://gitter.im/SeaCloudsEU/SeaCloudsPlatform
https://gitter.im/SeaCloudsEU
https://gitter.im/SeaCloudsEU/WP3

 D5.1.1 Definition of the software developing environment

25

8. Conclusions

This deliverable has provided an overview of the development approach the SeaClouds
consortium plan to follow and of the plan we have for integration. The document might be
updated in the future based on the findings we will identify during the development of the
project.

 D5.1.1 Definition of the software developing environment

26

9. References

[1] A. Fuggetta and E. Di Nitto. Software Process. In Proceedings of the on Future of Software
Engineering. FOSE’14. New York, NY, USA, 2014, ACM.

[2] M. Fowler. Continuous Integration. May
2006. http://martinfowler.com/articles/continuousIntegration.html

[3] SeaClouds deliverable D2.2. Initial architecture and design of the SeaClouds platform. June
2014. In progress

[4] SeaClouds deliverable D6.1 . Case study extended description. December

2013. http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-

Case_study_extended_description.pdf

http://martinfowler.com/articles/continuousIntegration.html

