

SeaClouds Project

D5.4.3 - Final version of sw platform

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-

based applications
Call identifier FP7-ICT-2012-10
Grant agreement no. Collaborative Project
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP5 Integration, infrastructure delivery and GUI

Due Date: M29
Submission Date: M30
Version: 1.1
Status Final
Author(s): Andrea Turli (Cloudsoft)

Diego Pérez (Polimi)
Javier Cubo (UMA)

Reviewer(s) Román Sosa González (Atos), Elisabetta Di Nitto (Polimi)

 2 D5.4.3 – Final version of sw platform

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 3 D5.4.3 – Final version of sw platform

Table of Contents

Executive Summary ... 4

1. Introduction ... 5

1.1. Glossary of Acronyms .. 5

2. Short overview of the final SeaClouds platform (Cloudsoft + UMA) 7

3. Implementation of repairing features (UMA) ... 8

4. Installation and deployment .. 10

4.1. Run SeaClouds ... 10

5. Detailed documentation of the platform ... 14

5.1. SeaClouds Dashboard .. 14

5.1. SeaClouds Deployer ... 15

5.1. SeaClouds Planner ... 15

5.1. SeaClouds Discoverer .. 16

5.2. SeaClouds Monitor .. 16

6. The SeaClouds testbed ... 19

7. Conclusions .. 20

 4 D5.4.3 – Final version of sw platform

Executive Summary

The objective of this document is to give an overview of the final SeaClouds integrated

prototype, which is the actual deliverable D5.4.3, as outcome of the implementation

work done in the technical work packages WP3 and WP4.

The document provides a short overview of the final SeaClouds architecture and of the

repairing functionality that was the last feature implemented in the SeaClouds

platform. Moreover, it provides instructions to deploy and configure the software,

presents the detailed documentation of all components and describes the testbed that

the consortium has been using to support the integration and evaluation phases.

 5 D5.4.3 – Final version of sw platform

1. Introduction

This document is accompanying the final release of the SeaClouds platform. Such a
release can be downloaded from the SeaClouds github repository
https://github.com/SeaCloudsEU.

The document is structured as follows:

 Section 2 is an overview of the SeaClouds final architecture.

 Section 3 provides an overview of the repairing feature.

 Section 4 explains how to deploy and configure the final version of the
SeaClouds platform.

 Section 5 provides the detailed documentation of all components.

 Section 6 describes the SeaClouds testbed that has been used in the integration
and evaluation phases.

 Finally, Section 7 draws the conclusions.

This deliverable references other deliverables where appropriate to avoid repetitions.

1.1. Glossary of Acronyms

Acronym Definition

AAM Abstract Application Model

API Application Program Interface

DBMS DataBase Management System

GUI Graphical User Interface

IaaS Infrastructure as a Service

JSON JavaScript Object Notation

MVC Model View Controller

PaaS Platform as a Service

QoB Quality of Business

QoS Quality of Service

REST REpresentational State Transfer

SLA Service Level Agreement

VM Virtual Machine

YAML YAML Ain't Markup Language
Table 1: Glossary of acronyms

https://github.com/SeaCloudsEU

 6 D5.4.3 – Final version of sw platform

 7 D5.4.3 – Final version of sw platform

2. Short overview of the final SeaClouds platform
This section provides an overview of the software architecture of the SeaClouds
platform in order to make this deliverable self-contained. It concentrates on the
illustration and description of components that are relevant for the installation and
deployment of the platform. For a detailed description of SeaClouds software
architecture, readers are referred to Final SeaClouds Architecture deliverable [1].

The software platform is composed of six main components, namely Dashboard,
Deployer, Discoverer, Monitor, Planner and SLA Service. Figure 1 shows a Component
and Connector view of the software architecture. Figure 1 also illustrates the software
packages that are relevant for the deployment and installation of each component.

At first, SeaClouds user interacts with the Dashboard to describe the application to
deploy and specify the Quality of Service with which the application should run. The
result of this step is sent to the Planner component. Then, the Planner creates a set of
deployment proposals in TOSCA language, which will be sent back to the Dashboard in
order to allow the user to choose his/her preferred deployment. The Planner is able to
generate this set of proposals by using the Discoverer functionality1, which, by
querying public repositories as cloudharmony.com or paasify.it, finds available cloud
resources, both IaaS and PaaS, and their properties and stores them in a mongoDB
database [2].

After the user has chosen one of the proposals, the Planner is invoked again, this time
to automatically create a Deployable Application Model (DAM), which will be a TOSCA
description of the application that will already contain all the necessary information for
its automatic deployment, installation and monitoring. Once the DAM is created, it is
sent back to the Dashboard, where the user can confirm the proposed deployment.

The Dashboard sends the confirmed DAM to the Deployer. In that moment, the
Deployer starts the deployment and installation of the application through the Apache
Brooklyn [3] engine that has been enhanced by SeaClouds team. The application
installation process also involves the configuration of the elements relevant the
monitoring and SLA control tasks. These tasks are executed by Monitor and SLA service
components, respectively. The Monitor component requires the installation of an
extended version of ModaClouds Tower4Clouds [4][4] monitoring engine, InfluxDB
[5]to store the monitored data, and Grafana [6] to graphically show monitored
information.

Once the user application is running, the Deployer is in charge of its runtime
management, as this component also includes application repair features through

1 The Discoverer is also equipped with a web-based GUI (called DrACO), which permits
retrieving the TOSCA-based representation of available cloud offerings.

 8 D5.4.3 – Final version of sw platform

autoscaling techniques. Next section details the implementation of these repairing
features.

Figure 1: Components, modules and connectors of the SeaClouds software architecture

3. Implementation of repairing features
In SeaClouds, the Deployer Engine is mainly in charge of deploying the plan (which can
consist of multiple components that need to be configured and integrated across
multiple machines, but it is also responsible (if necessary) of scaling to meet demand

Formatted: Font: (Default) Times New
Roman, Font color: Auto

Formatted: Font: (Default) Arial, 11
pt, Font color: Black

Comment [ED1]: From Roman: remove
the MODAClouds logo from SLA

Comment [JS2]: At the level of the
Dashboard, we would need a box
representing the DrACO interface, which is
connected with the Discoverer.

 9 D5.4.3 – Final version of sw platform

and restarting failed components. We refer to this last task as `repairing`, and it was
initially described in [D4.3]2.

The Deployer Engine is allowed to modify the deployed application whenever this is
needed. According to the runtime inputs and the policies defined at the level of the
entire application and/or components, Deployer Engine is capable to adjust the
application using the instructions (rules or policies) generated from the user
requirements. For example, the Deployer Engine can add more resources to a
deployed application to meet the growing demand.

For example, the following YAML represents an Abstract Deployable Profile (ADP). It
includes part of the plan corresponding to a Java web server (TomcatServer)
description, and an autoscaling policy is added to the group just composed by the
afore-mentioned node template. This policy is added because the user marked as
active the autoscale option when the topology and module requirements were
introduced through the SeaClouds GUI. In the same way, the kind of metric was chosen
by the Optimizer according to the node template type. Moreover, the rest of values
(e.g. minimum and maximum pool sizes, or upper and lower bounds) were inferred
from the user inputs and the capabilities and requirements of selected offerings.
Notice that most of the information included in this ADP is cloud agnostic. That is, no
information about specific technologies is included. For example, the autoscaling
policy only includes information about the type of metrics (requests per node),
independently of the node template type.

node_templates:

 Softcare_dashboard:

 type: seaclouds.nodes.webapp.tomcat.TomcatServer

 properties:

 language: JAVA

 autoscale: true

 artifacts:

 - wars.root: https://s3-eu-west-1.amazonaws.com/atos-

paas/v3/softcare-gui.war

 type: tosca.artifacts.File

 requirements:

 - host: Cloud_Foundry

 instancesPOC: 2

groups:

 operation_Software_dashboard:

 members:

 - Softcare_dashboard

 policies:

 - autoscaling:

 type: seaclouds.policies.autoscaling.AutoScalerPolicy

 autoscaler.resizeDownStabilizationDelay: 120000

 metric: seaclouds.metrics.requestPerNode

 minPoolSize: 1

 maxPoolSize: 5

 metricUpperBound: 20.104166666666664

2 [D4.3] SeaClouds consortium. Deliberable D4.3: Design of the runtime
reconfiguration process. July 2015.

 10 D5.4.3 – Final version of sw platform

 metricLowerBound: 10.052083333333332

From this information, a Deployable Abstract Model (DAM) is obtained by the
DAMGenerator, which is accepted by the Deployer Engine, based on Brooklyn-TOSCA.
In this case, the type of the metric is converted to an appropriate available metric
according to the node template supported by the Deployer. The same is applicable to
the policy type, an appropriate and available policy in the Deployer is chosen.

node_templates:

 Softcare_dashboard:

 type:

org.apache.brooklyn.entity.cloudfoundry.webapp.java.JavaCloudFoundryPa

asWebApp

 properties:

 language: JAVA

 autoscale: true

 application-url: https://s3-eu-west-1.amazonaws.com/atos-

paas/v3/softcare-gui.war

groups:

 operation_Software_dashboard:

 members: [Softcare_dashboard]

 policies:

 - autoscaling:

 type: org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy

 metric: app.server.requestpersecond

 minPoolSize: 1

 maxPoolSize: 5

 metricUpperBound: 20.104166666666664

 metricLowerBound: 10.052083333333332

4. Installation and deployment
This paragraph explains how to install SeaClouds platform using Apache Brooklyn.
Install the prerequisites

Vagrant

Virtualbox

Download latest SeaClouds Platform release from github.com:
$ wget https://github.com/SeaCloudsEU/SeaCloudsPlatform/archive/1.0.0.tar.gz
Untar the package
$ tar -zxf SeaCloudsPlatform-1.0.0.tar.gz
$ cd SeaCloudsPlatform-1.0.0/byon
Run vagrant
$ vagrant up

Point your favourite browser at http://10.10.10.100:8081

https://github.com/cloudsoft/brooklyn-tosca/
https://s3-eu-west-1.amazonaws.com/atos-paas/v3/softcare-gui.war
https://s3-eu-west-1.amazonaws.com/atos-paas/v3/softcare-gui.war
https://www.vagrantup.com/
https://www.virtualbox.org/
http://10.10.10.100:8081/

 11 D5.4.3 – Final version of sw platform

4.1. Run SeaClouds

Once you have the SeaClouds installer (aka Apache Brooklyn) running, you will have 2
new applications available.

Run SeaClouds on BYON
By selecting, “SeaClouds Platform on BYON” you can deploy SeaClouds on a single
node. BYON stands for Bring Your Own Node, and requires the user to specify the IP
addresses of the target nodes that will host the SeaClouds platform, in this particular
case it will always be 10.10.10.100, if you are running the installer inside Vagrant.
Steps:

1. Select the SeaClouds Platform on a single box
2. Click on YAML Composer. A YAML blueprint is shown (see Figure 3). You don’t need to

do anything here.
3. Finally Click Deploy button
4. After few minutes you will see something like

Figure 2: Deploy SeaClouds on your a single node

 12 D5.4.3 – Final version of sw platform

 Figure
3: A YAML blueprint in the Composer

Figure 4: The SeaClouds platform appears to be running.

 13 D5.4.3 – Final version of sw platform

Run SeaClouds on a cloud

Similarly, to the previous case, you can easily deploy SeaClouds platform to AWS EC2
using the following application item:

Figure 5: Select deployment on a cloud provider

Be sure to edit the `identity` and the `credential` fields with the AWS "Access Key ID"
and "Secret Access Key", respectively and finally click the Deploy button.

 14 D5.4.3 – Final version of sw platform

5. Detailed documentation of the platform
This section reports the detailed documentation that describes how to install and run
each individual component of the SeaClouds platform, organized per component. All
the requirements and configuration files, where needed, will be explicated.

5.1. SeaClouds Dashboard

This component provides an easy way to interact with SeaClouds Platform by using an
Angular.js web application.

Running SeaClouds Dashboard requires Java 7 (or greater) installed on the target
machine and the following other requirements:

 SeaClouds Planner and SeaClouds Deployer up and running on an accessible
endpoint.

 1 free TCP port.

 A config.yml configuration file with the following parameters:
o server.connector.port: A positive number which will be used by

Dropwizard to expose the Dashboard. Required. Eg. 8000.
o planner.host: SeaClouds Planner IP. Required. Eg. 127.0.0.1.
o planner.port: SeaClouds Planner Port. Required. Eg. 1234.
o deployer.host: SeaClouds Deployer IP. Required. Eg. 127.0.0.1.
o deployer.port: SeaClouds Planner Port. Required. Eg. 8081.
o deployer.username: SeaClouds Deployer Username. Optional. Eg. user.
o deployer.password: SeaClouds Deployer Password. Optional. Eg.

password.
o monitor.manager.host: SeaClouds Monitor (Tower4Clouds Monitoring

Manager) IP. Required. Eg. 127.0.0.1.
o monitor.manager.port: SeaClouds Monitor (Tower4Clouds Monitoring

Manager) Port. Required. Eg. 8710.
o monitor.grafana.host: SeaClouds Monitor Dashboard (Grafana) IP.

Required. Eg. 127.0.0.1.
o monitor.grafana.port: SeaClouds Monitor Dashboard (Grafana) Port.

Required. Eg. 3000.
o sla.host: SeaClouds Deployer IP. Required. Eg. 127.0.0.1.
o sla.port: SeaClouds SLA Port. Required. Eg. 8080.

To install SeaClouds Dashboard in standalone mode, one can download the latest
artifact from http://search.maven.org/remotecontent?filepath=eu/seaclouds-
project/dashboard/1.0.0/dashboard-1.0.0.jar and then run:

java -jar dashboard.jar server path/to/config.yml

http://search.maven.org/remotecontent?filepath=eu/seaclouds-project/dashboard/1.0.0/dashboard-1.0.0.jar
http://search.maven.org/remotecontent?filepath=eu/seaclouds-project/dashboard/1.0.0/dashboard-1.0.0.jar

 15 D5.4.3 – Final version of sw platform

5.1. SeaClouds Deployer

The main goal of the SeaClouds Deployer component is to deploy the application in a
multi-cloud environment.

Install and runnning SeaClouds Deployer requires an Apache Brooklyn 0.9.0
installation plus a couple of additional artifacts available at
http://search.maven.org/remotecontent?filepath=eu/seaclouds-
project/deployer/1.0.0/deployer-1.0.0.jar which adds PaaS support and some new
Brooklyn entities and developed for SeaClouds.

SeaClouds deployer jar has to be added to `$BROOKLYN_HOME/bin/lib/dropins`
folder.

5.1. SeaClouds Planner

This component provides design time functionalities for the SeaClouds Platform.
It provides planning and DAM generation.

Running SeaClouds Planner requires Java 7 (or greater) installed on the target machine
and:

 A SeaClouds Discoverer, Sla, Monitor component services up and running since
they will be called via HTTP by the planner.

 A plannerconf.yml configuration file.

 A config.yml configuration file with the following parameters:
o planner port (1234 by default)
o discovererURL is the Discoverer Component URL and port in the format

http://{ip}:{port}/
o monitorGeneratorURL is the Monitor Component URL (http://{ip})
o monitorGeneratorPort is the Monitor Component port ({number})
o slaGeneratorURL: is the SLA Component URL and port in the format

http://{ip}:{port}/
o deployableProviders is the list of providers that the Deployer

component is able to deploy (by default ["openstack-nova","openstack-
keystone","openstack-nova-ec2", "byon", "sts", "elasticstack",
"cloudstack", "rackspace-cloudidentity","aws-
ec2","gogrid","elastichosts-lon-p","elastichosts-sat-p","elastichosts-lon-
b","openhosting-east1","serverlove-z1-man","skalicloud-sdg-
my","go2cloud-jhb1","softlayer","hpcloud-compute","rackspace-
cloudservers-us","rackspace-cloudservers-uk","azurecompute","google-
compute-engine","CloudFoundry"])

o filterOfferings is a boolean flag that enables the filter of non deployable
providers for the matching process (default is false)

 16 D5.4.3 – Final version of sw platform

All the configuration info are required.

To start the SeaClouds Planner, once you have fulfilled the requirements you only need
to run on JRE (>=1.7): java -jar planner-service.jar server path/to/config.yml.

5.1. SeaClouds Discoverer

The SeaClouds Discoverer module is able to provide information about cloud offerings
through its RESTful API.

Those information are a TOSCA YAML representation (following the SeaClouds
Discovery design and orchestration functionalities specification) of the offerings
retrieved by the crawlers from https://cloudharmony.com and http://www.paasify.it.

Running SeaClouds Discoverer requires Java 7 (or greater) installed on the target
machine and:

 A discovererconf.yml configuration file

 A running MongoDB service, used as a permanent layer to store information
about cloud offerings used by SeaCloudsPlatform

 A config.yml configuration file with the following parameters:
o discoverer port (1236 by default)
o activeCrawlers is the list of crawlers to use (currently we only support

"CloudHarmonyCrawler" and "PaasifyCrawler")
o databaseURL is the URL of the MongoDB that will be used to store

offerings
o databasePort

All the configuration variables are required.

Once you have fulfilled the requirements you only need to run on JRE (>=1.7): java
-jar discoverer.jar server path/to/config.yml.

5.2. SeaClouds Monitor

The SeaClouds monitor module is based on Tower4Clouds, a monitoring platform for
multi-clouds application developed in the context of the MODAClouds FP7 European
Project.
The released platform has been extended and customized in order satisfy specific
SeaClouds monitoring requirements. More specifically, since Tower4Clouds relies on
the concept of Data Collector (DC), or the components responsible to collect

 17 D5.4.3 – Final version of sw platform

monitoring metrics, as main the mechanism to extend the Platform, a number of new
Tower4Clouds's Data Collectors has been developed in SeaCloud.

Moreover, being Tower4Clouds already integrated with some suitable external tools
enabling visualization of monitoring data, like InfluxDB and Graphite, we decided to
exploit this integration as a way to provide application metrics visualization in
SeaClouds.

In the following, we are going to provide instructions on how to install each
component belonging to the SeaClouds Monitor module starting from a fresh
installation of Ubuntu 14.04.

SeaClouds currently use Tower 4Clouds version 0.2.3. In order to work Tower 4Clouds
needs Java 7 installed. In order to download Tower 4Clouds Data Analyzer v0.2.3 and
Tower 4Clouds Monitor Manager v.0.2.3 you can run the following command:

 wget https://github.com/deib-polimi/tower4clouds/releases/download/v0.2.3/data-
analyzer-0.2.3.tar.gz
 wget https://github.com/deib-
polimi/tower4clouds/releases/download/v0.2.3/manager-server-0.2.3.tar.gz

The only required configuration is that the Data Analyzer need to know the public IP of
the Monitor Manager. In order to do that you can export the following environmental
variable:

 export
MODACLOUDS_TOWER4CLOUDS_DATA_ANALYZER_ENDPOINT_IP_PUBLIC=<MONITO
R-MANAGER-PUBLIC-PORT>

After that, you need to untar the downloaded files and start the the two services using
their own starter scripts. You could use the following script:

 tar -xvzf data-analyzer-0.2.3.tar.gz
 tar -xvzf manager-server-0.2.3.tar.gz
 cd data-analyzer-0.2.3
 rm -f tower4clouds-data-analyzer.log
 nohup bash tower4clouds-data-analyzer > tower4clouds-data-
analyzer.log 2>&1 &
 cd ..
 cd manager-server-0.2.3
 rm -f tower4clouds-manager.log
 nohup bash tower4clouds-manager > tower4clouds-manager.log
2>&1 &

After that you can check that the platform is up and running by connecting to
http://<MONITOR-MANAGER-HOST-IP>:8170/webapp to see the Monitor Manager
web console.

 18 D5.4.3 – Final version of sw platform

Finally, according with the current status of Tower 4Clouds, it is necessary to install an
initial static monitoring rule enabling the monitoring of the response time for
application modules. You can use the following curl in order to do that, properly
replacing the Monitoring Manager endpoint information (IP and port):

 curl -X POST -H "Content-type: application/xml"
http://${MONITOR_MANAGER_HOST}:${MONITOR_MANAGER_PORT}/v1/monito
ring-rules -d '
 <ns2:monitoringRules>
 <ns2:monitoringRule id="internalComponentRTRule"
timeStep="2" timeWindow="2">
 <ns2:monitoredTargets>
 <ns2:monitoredTarget class="Method"/>
 </ns2:monitoredTargets>
 <ns2:collectedMetric
metricName="EffectiveResponseTime">
 <ns2:parameter
name="samplingProbability">1</ns2:parameter>
 </ns2:collectedMetric>
 <ns2:metricAggregation
groupingClass="InternalComponent" aggregateFunction="Average"/>
 <ns2:actions>
 <ns2:action name="OutputMetric">
 <ns2:parameter
name="metric">AverageResponseTimeInternalComponent</ns2:paramete
r>
 <ns2:parameter
name="value">METRIC</ns2:parameter>
 <ns2:parameter
name="resourceId">ID</ns2:parameter>
 </ns2:action>
 </ns2:actions>
 </ns2:monitoringRule>
 </ns2:monitoringRules>
 '

###InfluxDB

InfluxDB will use ports 8083, 8086, 8090, and 8099. Once you install you can change
those ports and other options in the configuration file, which is located at either
/opt/influxdb/shared/config.toml or /usr/local/etc/influxdb.conf"

Tower 4Clouds comes integrated with InfluxDB version 0.8. In order to install InfluxDB
one can refer to the InfluxDB installation documentation available at the following
[link](https://influxdb.com/docs/v0.8/introduction/installation.html#ubuntu-debian).

In particular it is sufficient to run the following commands to download and install
InfluxDB:

 19 D5.4.3 – Final version of sw platform

 #for 64-bit systems
 wget
http://get.influxdb.org.s3.amazonaws.com/influxdb_0.8.9_amd64.de
b
 sudo dpkg -i influxdb_0.8.9_amd64.deb

In order to start InfluxDB just run the following:

 sudo service influxdb start

In order to install Grafana you need to download and install Grafana the following
commands need to be executed:

 wget
https://grafanarel.s3.amazonaws.com/builds/grafana_2.5.0_amd64.d
eb
 sudo apt-get install -y adduser libfontconfig
 sudo dpkg -i grafana_2.5.0_amd64.deb

To start Grafana just run the following:

 sudo service grafana-server start

6. The SeaClouds testbed
This section describes the platform integration testbed, as an update of the testing
platform Amazon Machine Image (AMI) explained in [D5.4.2]3.

The goal of the updated testbed is to facilitate the integration testing of SeaClouds
components. The testbed is composed of a set of Virtual Machines on AWS. Figure 6
depicts a view of EC2 Dashboard with the instances used for components development
and integration testing. Concretely, red arrows point to the VMs that are part of the
testbed environment.

3 [D5.4.2] Seaclouds consortium. Deliverable D5.4.2. Second version of the SW
platform. September 2015.

http://get.influxdb.org.s3.amazonaws.com/influxdb_0.8.9_amd64.deb
http://get.influxdb.org.s3.amazonaws.com/influxdb_0.8.9_amd64.deb
https://grafanarel.s3.amazonaws.com/builds/grafana_2.5.0_amd64.deb
https://grafanarel.s3.amazonaws.com/builds/grafana_2.5.0_amd64.deb

 20 D5.4.3 – Final version of sw platform

Figure 6: VMs of the SeaClouds testbed from the AWS console.

The software programs running in the each of the instances used for the testbed are
updated while new revisions of SeaClouds components are built.

The responsible of each SeaClouds component that offers its functionality through a
REST API is responsible for setting the service up in the AWS instance and updating the
information to the rest of the consortium developers in order to reach the REST
service. We use a spreadsheet to store the information that each developer who is
responsible of a REST service has to share with the rest of developers for the
integration testing. Figure 7 shows the spreadsheet with the descriptive information
that developers have to include about their services. For each service, it is required the
IP address and port where the software listens to connections, the main URL to reach
the service, credentials to access the service in case that they were necessary and the
URL from where anybody can download the software that executes the service.

Figure 7: Internal excel sheet used to keep track of the configuration of all SeaClouds components.

7. Conclusions
This document accompanies the final release of the SeaClouds platform and describes
the main technologies and the processes that SeaClouds development team relied on
to develop the SeaClouds platform.

 21 D5.4.3 – Final version of sw platform

The development process has been highly influenced by Agile methodologies, XP
programming and some of the most popular and appreciated tools in the OSS
community, which has proven effective in a variety of geographically distributed
development teams.
It is well-known that the process is just a way to mitigate the risk. SeaClouds had a lot
of benefits from this process, but, along the way, many assumptions have been proven
wrong. Successful agile teams rely on effective communication and not on tools,
although they may help.

The SeaClouds consortium decided to adopt Continuous Integration to significantly
reduce integration problems, allowing a team to develop cohesive software more
rapidly, but the responsibility of the integration was not equally understood and
postponed or ignored for the most part of the project.
CI is a software development practice where members of a team integrate their work
frequently, leading to multiple integrations per day. This is possible because the
consortium maintains a Single Source repository, hosted at GitHub where each
developer Commits to the Mainline as soon as she has a bug fix or a new feature. This
process is guarded by the so called GitHub Flow. This needed to be protected more
along the way, as giving the full permission on the repository to everybody was not
working as expected.
Each integration is verified by an automated build (including test) done by TravisCI to
detect integration errors as quickly as possible and evaluated by Codeconv, an hosted
service that is able to calculate the test coverage of the project. SeaClouds scored a
decent 48% an the end of the project.

 22 D5.4.3 – Final version of sw platform

8. References
[1]. SeaClouds deliverable D2.4. Final SeaClouds Architecture. January 2015.

Available at: http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D2.4-
Final_SeaClouds_Architecture.pdf

[2]. https://www.mongodb.com
[3]. https://brooklyn.apache.org
[4]. http://www.modaclouds.eu/software/open-source-repositories/
[5]. https://influxdata.com
[6]. http://grafana.org

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D2.4-Final_SeaClouds_Architecture.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D2.4-Final_SeaClouds_Architecture.pdf
https://www.mongodb.com/
https://brooklyn.apache.org/

